微软正在开发AI优化芯片,以降低训练生成式AI模型(例如为OpenAI ChatGPT聊天机器人提供动力的模型)的成本。
The Information近日援引两位知情人士的话说,至少从2019年开始,微软就一直在研发代号为“Athena”的新芯片组。微软和OpenAI的员工已经可以使用新芯片,并正在使用这些芯片在GPT-4等大型语言模型上测试芯片的性能。
训练大型语言模型需要摄取和分析大量数据,以便为AI创建新的输出内容来模仿人类对话,这是生成式AI模型的一大标志,这个过程需要大量(大约数万个)针对AI进行优化了的计算机芯片,其成本可能是非常高的。
据说微软正在开发用于自己产品的新型芯片,以减少对第三方芯片的依赖,并降低成本。目前,计算机芯片设计商Nvidia在AI芯片市场占据主导地位,去年发布了最新的H100 GPU。微软将加入Amazon、Google和Meta Platforms的行列,都针对AI开发和构建自己的定制化芯片。
SemiAnalysis首席分析师Dylan Patel告诉The Information:“微软希望在其所有应用中使用大型语言模型,包括Bing、Microsoft 365和GitHub,要使用现成的硬件进行大规模部署,那么每年的花费将达到数百亿美金。”
微软在2023年初向OpenAI投资100亿美元,迅速开始将其AI技术集成到微软的各项服务中,包括带有Bing Chat功能的Bing搜索引擎、Microsoft 365、面向企业用户的Dynamics 365以及面向安全专业人员的Security Copilot。
报道指出,微软的这些芯片其目的并不是取代Nvidia的芯片,相反,这些芯片是为了增强微软现有的基础设施。据The Information称,微软已经规划好了该芯片的未来几代。
目前尚不清楚微软是否计划为Azure云AI客户发布这些芯片,或者是否仅供内部使用,但微软确实提供了基于Nvidia H100芯片组的AI优化云实例。目前还不清楚这会给微软和Nvidia去年年底公布的AI超级计算机合作关系带来怎样的影响。
据报道,微软预计新芯片将在2024年亮相。
好文章,需要你的鼓励
Helios Towers供应链总监Dawn McCarroll在采访中分享了公司的数字化转型经验。作为一家在非洲和中东地区运营近15000个移动通信塔站的公司,Helios正通过SAP S/4Hana系统升级、AI技术应用和精益六西格玛方法论来优化供应链管理。McCarroll特别强调了公司Impact 2030战略中的数字包容性目标,计划在未来五年内培训60%的合作伙伴员工掌握精益六西格玛原则,并利用大数据和AI技术实现端到端的供应链集成。
德国弗劳恩霍夫研究院提出ViTNT-FIQA人脸质量评估新方法,无需训练即可评估图像质量。该方法基于Vision Transformer层间特征稳定性原理,通过测量图像块在相邻层级间的变化幅度判断质量。在八个国际数据集上的实验显示其性能可媲美现有最先进方法,且计算效率更高,为人脸识别系统提供了即插即用的质量控制解决方案,有望广泛应用于安防监控和身份认证等领域。
威胁行为者在npm注册表上传8个恶意包,伪装成n8n工作流自动化平台的集成组件来窃取开发者OAuth凭据。其中一个名为"n8n-nodes-hfgjf-irtuinvcm-lasdqewriit"的包模仿Google Ads集成,诱导用户在看似合法的表单中关联广告账户,然后将凭据传输到攻击者控制的服务器。这种攻击利用了工作流自动化平台作为集中凭据库的特点,能够获取多个服务的OAuth令牌和API密钥。
布朗大学联合图宾根大学的研究团队通过系统实验发现,AI医疗助手的角色设定会产生显著的情境依赖效应:医疗专业角色在急诊场景下表现卓越,准确率提升20%,但在普通医疗咨询中反而表现更差。研究揭示了AI角色扮演的"双刃剑"特性,强调需要根据具体应用场景精心设计AI身份,而非简单假设"更专业等于更安全",为AI医疗系统的安全部署提供了重要指导。