微软正在开发AI优化芯片,以降低训练生成式AI模型(例如为OpenAI ChatGPT聊天机器人提供动力的模型)的成本。
The Information近日援引两位知情人士的话说,至少从2019年开始,微软就一直在研发代号为“Athena”的新芯片组。微软和OpenAI的员工已经可以使用新芯片,并正在使用这些芯片在GPT-4等大型语言模型上测试芯片的性能。
训练大型语言模型需要摄取和分析大量数据,以便为AI创建新的输出内容来模仿人类对话,这是生成式AI模型的一大标志,这个过程需要大量(大约数万个)针对AI进行优化了的计算机芯片,其成本可能是非常高的。
据说微软正在开发用于自己产品的新型芯片,以减少对第三方芯片的依赖,并降低成本。目前,计算机芯片设计商Nvidia在AI芯片市场占据主导地位,去年发布了最新的H100 GPU。微软将加入Amazon、Google和Meta Platforms的行列,都针对AI开发和构建自己的定制化芯片。
SemiAnalysis首席分析师Dylan Patel告诉The Information:“微软希望在其所有应用中使用大型语言模型,包括Bing、Microsoft 365和GitHub,要使用现成的硬件进行大规模部署,那么每年的花费将达到数百亿美金。”
微软在2023年初向OpenAI投资100亿美元,迅速开始将其AI技术集成到微软的各项服务中,包括带有Bing Chat功能的Bing搜索引擎、Microsoft 365、面向企业用户的Dynamics 365以及面向安全专业人员的Security Copilot。
报道指出,微软的这些芯片其目的并不是取代Nvidia的芯片,相反,这些芯片是为了增强微软现有的基础设施。据The Information称,微软已经规划好了该芯片的未来几代。
目前尚不清楚微软是否计划为Azure云AI客户发布这些芯片,或者是否仅供内部使用,但微软确实提供了基于Nvidia H100芯片组的AI优化云实例。目前还不清楚这会给微软和Nvidia去年年底公布的AI超级计算机合作关系带来怎样的影响。
据报道,微软预计新芯片将在2024年亮相。
好文章,需要你的鼓励
OpenAI发布ChatGPT Atlas AI浏览器,支持网页问答、历史查询和邮件改写等功能。同时曝光秘密项目Mercury,雇佣约100名前投行精英以每小时150美元训练AI金融模型。公司还因用户滥用Sora生成马丁·路德·金视频而暂停相关功能。此外,医疗AI搜索引擎OpenEvidence获2亿美元融资,估值60亿美元。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
随着Chrome和Safari主导浏览器市场,众多替代浏览器正在挑战这些行业巨头。本文梳理了当前顶级替代浏览器,包括AI驱动的浏览器如Perplexity的Comet、Arc公司的Dia、Opera的Neon和OpenAI的Atlas;注重隐私的浏览器如Brave、DuckDuckGo、Ladybird和Vivaldi;以及专注特定领域的浏览器如Opera Air和SigmaOS。这些浏览器通过AI集成、隐私保护、定制化和专注用户福祉等特色功能,为用户提供了多样化的浏览体验选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。