微软正在开发AI优化芯片,以降低训练生成式AI模型(例如为OpenAI ChatGPT聊天机器人提供动力的模型)的成本。
The Information近日援引两位知情人士的话说,至少从2019年开始,微软就一直在研发代号为“Athena”的新芯片组。微软和OpenAI的员工已经可以使用新芯片,并正在使用这些芯片在GPT-4等大型语言模型上测试芯片的性能。
训练大型语言模型需要摄取和分析大量数据,以便为AI创建新的输出内容来模仿人类对话,这是生成式AI模型的一大标志,这个过程需要大量(大约数万个)针对AI进行优化了的计算机芯片,其成本可能是非常高的。
据说微软正在开发用于自己产品的新型芯片,以减少对第三方芯片的依赖,并降低成本。目前,计算机芯片设计商Nvidia在AI芯片市场占据主导地位,去年发布了最新的H100 GPU。微软将加入Amazon、Google和Meta Platforms的行列,都针对AI开发和构建自己的定制化芯片。
SemiAnalysis首席分析师Dylan Patel告诉The Information:“微软希望在其所有应用中使用大型语言模型,包括Bing、Microsoft 365和GitHub,要使用现成的硬件进行大规模部署,那么每年的花费将达到数百亿美金。”
微软在2023年初向OpenAI投资100亿美元,迅速开始将其AI技术集成到微软的各项服务中,包括带有Bing Chat功能的Bing搜索引擎、Microsoft 365、面向企业用户的Dynamics 365以及面向安全专业人员的Security Copilot。
报道指出,微软的这些芯片其目的并不是取代Nvidia的芯片,相反,这些芯片是为了增强微软现有的基础设施。据The Information称,微软已经规划好了该芯片的未来几代。
目前尚不清楚微软是否计划为Azure云AI客户发布这些芯片,或者是否仅供内部使用,但微软确实提供了基于Nvidia H100芯片组的AI优化云实例。目前还不清楚这会给微软和Nvidia去年年底公布的AI超级计算机合作关系带来怎样的影响。
据报道,微软预计新芯片将在2024年亮相。
好文章,需要你的鼓励
本文探讨了如何利用混合智能来超越传统的多元化、公平性和包容性(DEI)议程。作者指出,当前的DEI计划可能加剧分歧,而混合智能则提供了一个统一的框架,强调人类共同的基本维度。文章提出了一个2x4模型,包括4个个人维度和4个集体维度,以此来理解人类经验的普遍性。通过将人工智能与这种自然智能模型相结合,组织可以创造更包容、更有效的工作环境。}
这篇文章介绍了AI芯片初创公司EnCharge的创新技术,该公司声称其模拟人工智能加速器在功耗上仅需传统桌面GPU的一小部分,却能提供相当的计算性能。EnCharge的推理芯片在8位精度下能以1瓦特的功耗提供150 TOPS的AI计算能力。该技术经过多年的研发,旨在通过在内存中进行计算来提高效率,并支持多种AI工作负载。
微软发布了 Majorana 1 量子芯片,这是一个重大突破。该芯片采用拓扑量子比特技术,具有更低的错误率,有望解决量子计算的可扩展性问题。这项技术是微软近 20 年研究的成果,标志着量子硬件取得重要进展,为构建大规模量子计算机铺平了道路。
xAI公司推出的Grok 3模型在各项关键基准测试中表现出色,匹敌或超越了目前最先进的AI模型。尽管训练尚未完成,Grok 3已展现出强大实力。本文探讨了Grok 3可能对AI行业产生的影响,包括加速模型发布周期、验证大规模计算投资的价值,以及推动开源文化的发展等方面。