这款产品Amazon Aurora I/O-Optimized,于周四首次亮相,预计可为某些工作负载节省高达40%的成本。
AWS关系数据库引擎副总裁Rahul Pathak表示:“我们通过 Aurora I/O-Optimized为客户的大规模I/O密集型应用提供了巨大的价值,并为那些希望把要求最苛刻的工作负载迁移到Aurora和云端的客户提供了更好的选择。”
Aurora是一种托管的关系型数据库,企业可以使用它而无需维护底层基础设施。Aurora与另外两个主流的关系型数据库MySQL和PostgreSQL相互兼容,也就是说,企业可以把为MySQL和PostgreSQL编写的应用切换到 Aurora,而无需进行重大的代码更改。
AWS于2014年发布了Aurora的初始版本,如今该服务已经被数十万家客户采用,其中包括许多财富500强企业。
Aurora I/O-Optimized是Aurora服务的最新版本,主要面向那些执行大量数据I/O操作的应用。
Aurora标准版是根据客户部署数据库的计算实例的数量和类型,以及他们使用的存储容量来计费的。此外,客户还需要为针对应用每个I/O操作进行付费。
该数据库针对新Aurora I/O优化的新版本则有不同的定价模型。它与标准版本一样,是根据客户使用的计算实例的数量和类型以及相关的存储消耗进行计费,但是用户无需为I/O操作付费,这使得I/O密集型应用运行成本更低。
AWS表示,该产品可以节省大量资金。如果I/O操作占与应用相关的数据库费用的四分之一以上,那么Aurora I/O-Optimized承诺最多可降低40%的成本。
该产品还可以让客户更轻松地预测云费用。当数据库按I/O操作计费的时候,应用I/O请求的意外增加可能会导致成本超支,而Aurora I/O-Optimized通过消除与I/O操作相关的费用降低了这种风险。
企业可以通过在Amazon EC2预留实例上运行Aurora I/O优化来进一步降低成本,这些实例提供比标准虚拟机更低的价格以换取长期使用的承诺。
据AWS称,企业不仅可以使用Aurora I/O-Optimized支持新的关系型数据库集群,还可以为现有部署企业该服务。客户可以每30天将现有部署切换到Aurora I/O-Optimized,该任务不需要管理员重启数据库实例,从而有助于避免停机。
好文章,需要你的鼓励
随着IT成为企业运营的核心支撑,IT服务台的重要性日益凸显。现代ITSM平台已从简单的帮助台发展为复杂的管理系统,集成了工单跟踪、资产管理、性能监控等功能。这些平台的核心是工单门户,确保请求得到及时处理。许多产品强调自助服务功能和AI集成,通过智能路由、预测分析和生成式AI来提高问题解决效率。本文详细介绍了21款主流ITSM工具,帮助企业选择适合的解决方案。
韩国AI研究院团队深入研究了大型语言模型的置信度评估机制,发现AI有时会对错误答案表现出过度自信的"幻觉"现象。研究揭示了AI内部"置信度计算器"的系统性偏差,提出了"内部一致性检测"方法来识别AI的真实确信程度,为开发更可靠的AI系统提供了重要科学基础。
思科与英伟达、VAST Data合作推出安全AI工厂,整合服务器、GPU和存储设备为企业提供一体化AI基础设施。该方案采用融合基础设施形式,以AI POD作为核心组件,搭载英伟达RTX PRO 6000 Blackwell GPU和思科UCS服务器。存储方面支持NetApp、Pure Storage或VAST Data产品。VAST声称其InsightEngine能够加速RAG管道,将响应延迟从分钟级降至秒级,支持企业级智能体AI应用。
苹果公司研究团队通过创新的GSM-Symbolic测试方法,发现当前先进AI系统在数学推理方面存在严重缺陷。研究表明,AI虽然在标准测试中表现优异,但面对表述稍有变化的同类问题时准确率显著下降,暴露出其缺乏真正的逻辑理解能力,主要依赖模式匹配而非推理。这项发现为AI评估提供了新标准,并为未来开发更可靠的AI推理系统指明了方向。