AWS近日布推出一项名为AWS AppFabric的新无代码服务,旨在缓解SaaS应用蔓延带来的复杂性。
AWS在近日举行的AWS应用创新日活动上发布了该服务,企业借助AWS AppFabric可以把多个SaaS应用连接到单个控制台,以提高安全性、管理和生产力,它有助于集成多个SaaS应用,提供应用使用的统一视图,从而无需构建自定义集成。
AWS解释说,企业使用数十个、甚至是数百个不同的SaaS应用来执行通信、内容管理、财务和客户关系等无数任务已经变得很常见,问题是,这些SaaS应用很少相互兼容,这导致了安全性和生产力方面的许多挑战,例如,每个SaaS应用都有自己独特的控件、日志和界面。
为了解决这个问题,许多企业团队为他们使用的每个SaaS应用构建点对点的集成,但这项工作可能需要几个月的时间。集成方面的挑战包括,每个应用使用的应用编程接口和数据格式是混乱的,所有这些都使得分析SaaS数据跟踪应用的使用方式变得更加困难。
AWS希望通过AppFabric改变这一现状。AppFabric推出时支持连接12个第三方SaaS应用,包括Asana、Atlassian、Dropbox、Okta、Slack、Smartsheet、Webex和Zoom等热门产品,让企业能够从AWS Management Console中的一个位置对其进行管理。AWS表示,随着时间的推移,支持的应用数量将会不断增加。
好处是AppFabric可以为每个连接的SaaS应用创建一组标准化的安全和操作数据,从而提高对这些应用使用方式的可见性。AWS表示,通过这种方式,企业组织就可以获取洞察来提高生产力、降低运营成本、并增强安全性。
AppFabric今天推出之后,很快就会受益于Amazon Bedrock提供的额外生成式AI功能,后者可通过API提供主流的基础模型并进行自定义。
这样生成式AI就可以帮助减少员工在不同应用之间切换以获取信息或完成某些任务所需的时间,例如,员工经常发现自己要在多个应用之间切换,以复制和粘贴来自不同来源的数据来编写报告。AppFabric的生成式AI让你可以更轻松地生成会议记录、起草更新的电子邮件、编写项目更新等任务。
然后,它生成的内容可以以用特定应用的恰当格式进行交付。例如,AWS表示,用户可以提示AI在Asana中创建一项任务,从电子邮件线程、Slack对话和文字处理文档等来源中提取详细信息。然后,AppFabric的AI助手就会利用其与这些应用的集成来为用户完成任务。
AppFabric还可以通过开放网络安全架构框架聚合和标准化SaaS应用的数据,并使其可供Logz.io、Netskope、Netwitness、Rapid7和Splunk等安全工具使用。
Constellation Research分析师Holger Mueller表示,AppFabric可以被视为一种“跨SaaS域的服务”,实现SaaS软件产品之间更紧密的集成,为用户带来一些有趣的新功能。
“它让用户能够以有趣的方式自动化SaaS产品的使用和管理方式,而且它是低代码的,所以做到这一点是非常简单的。AWS正在帮助更多企业掌控他们自己的自动化,今年AWS很快就会推出基于生成式AI的助手,让用户的生活变得更加轻松。”
AWS应用副总裁Dilip Kumar表示,AppFabric将解决IT和安全团队的一个主要痛点。他表示:“通过AppFabric,客户和合作伙伴现在拥有了一个简单的解决方案来部署和扩展全球使用最广泛的应用,从而帮助组织节省资金、提高生产力并提高安全性。”
AWS AppFabric目前已在Amazon位于美国东部(弗吉尼亚北部)、欧洲(爱尔兰)和亚太地区(东京)的区域全面上线,并将很快在其他地点推出。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。