红帽高级开发者Bastien Nocera在一篇博文中表示,公司正进一步整合/收缩其在桌面Linux上的开发工作。
这篇博文题为《新的责任》,其中提到红帽在今年6月就决定不再为RHEL打包LibreOffice。之后红帽公司解雇了Fedora项目负责人Ben Cotton。Nocera本人倒是没有被解雇,只是“被调到另一团队,负责处理红帽优先项目清单中的任务。”
Nocera还提供一条指向6月底一封电子邮件的链接,其中列出\他被迫停止开发的多个Fedora软件包。他表示自己只能把十分之一的工作时间分配给这些项目,并描述了目前已经被基本遗弃的开发方向:
我的管理链已经决定停止关于桌面蓝牙、多媒体应用程序(即totem、rhythmbox 和 sound-juicer)以及libfprint/fprintd的全部上下游工作。
在LibreOffice发布之初,红帽的Matthias Clasen曾表示该公司正集中精力构建工作站软件栈的其余部分:
我们正在调整RHEL for Workstations的工程优先级,重点关注Wayland协议中的空缺、构建HDR支持、开发颜色敏感任务所需的内容,外加工作站用户需要的多项其他改进。
这些确实都是目前桌面Linux的重大弱项。虽然对Wayland和Linux图形现代化的研发投资值得肯定,但此举的另一方面也就是对传统X11显示栈的进一步打击……我甚至怀疑,X.org服务器可能在红帽管理层眼中已然沦为“遗留”资产。
红帽目前在桌面领域的主要赚钱工具是Red Hat Enterprise Linux for Workstations,它专注于“高性能和图形密集型工作负载,例如动画、视觉效果(VFX)、计算机辅助设计/计算机辅助工程(CAD/CAE)以及科学研究。”
此类工作站的用户很可能还有另一台辅助计算机,例如Mac笔记本电脑等,用于执行电子邮件、Zoom、Teams或者Meet通话等相对简单的日常生产力工作。也就是说,他们的蓝牙耳机(例如Nocera在工作中使用的SteelSeries)需要接入的是这些设备,而并非RHEL/W机。
即使如此,此番调整对于GNOME项目来说也是一记沉重打击。根据GNOME维基条目中公布的信息,Nocera是该项目的核心开发人员。
其他Linux发行版之前就感受到了与GNOME项目难以合作,因此Linux Mint最近开始转向其他蓝牙工具。千万别以为这是什么新问题,Ubuntu创始人Mark Shuttleworth早在2011年就曾对此事发过牢骚。
另外值得一提的是,各Linux桌面之间存在大量重叠,几乎每个项目都有自己的一套工具来执行相同任务。正如我们最近在即将发布的GNOME 45项目公告中看到的那样,GNOME维护着图像查看器、媒体播放器、两个终端模拟器、两个文本编辑器等。而几乎所有这一切,在KDE、ElementaryOS Pantheon以及Xfce等中都能找到替代方案。
在多数情况下,某些独立项目已经在市场上明确占据了主导地位,例如Firefox和Chrome就全面取代了GNOME Web及KDE提供的三种网络浏览器,VLC则力压其他一切桌面媒体播放器。Linux Mint的XApps计划就对重复性工具做出了广受欢迎的比较,应该有更多发行版加入进来。此外,其中很多应用程序实际是各种底层框架的前端。例如,GNOME的蓝牙工具就依赖于底层的BlueZ技术栈。
技术大厂们很早就意识到,在桌面Linux身上几乎赚不到什么钱,因此这块市场才被留给了免费发行版和非营利组织——也可能正因如此,各参与方的开发工作间才存在大量重复。所以加强成果整合可能并不是坏事。
好文章,需要你的鼓励
科技亿万富翁拉里·埃里森资助的研究团队将向英国牛津大学投资1.18亿英镑,用于将AI技术应用于疫苗研究。牛津疫苗研究小组将领导这一项目,研究人体免疫系统对严重细菌感染和抗生素耐药性的反应。该项目由曾主导新冠疫苗试验的安德鲁·波拉德教授领导,计划采用人体挑战模型,让志愿者在受控条件下接触细菌,然后运用现代免疫学和AI工具来精确识别预测保护效果的免疫反应,以开发针对致命疾病的创新疫苗。
伦斯勒理工学院研究团队通过网络科学方法首次系统揭示了大语言模型的内部"认知架构"。研究发现AI模型采用类似鸟类大脑的弱定位架构,模块间通过分布式协作而非专业化分工来处理认知任务。这一发现颠覆了基于功能模块优化的传统思路,指出应充分利用网络级协作来提升AI性能。
据报道,ChatGPT开发商OpenAI计划在印度建设一座耗电量超过1吉瓦的数据中心,目前正寻找当地合作伙伴。该设施预计可容纳至少5.9万片英伟达B200芯片。这可能是OpenAI全球数据中心计划的一部分,旨在为国际用户提供更低延迟服务。OpenAI CEO奥特曼将于下月访问印度,公司还计划年底前在新德里开设办事处。
腾讯和清华研究团队首次从数学理论角度解释了为什么AI需要外部工具。研究证明纯文本AI存在"隐形枷锁",无法突破预训练的能力边界,而工具集成能打破这种限制,让AI获得全新的问题解决策略。团队还开发了ASPO算法,解决了训练AI更早使用工具的技术难题。实验显示配备工具的AI在数学问题上全面超越纯文本版本,展现出三种新奇认知模式,为构建更强大的AI系统提供理论指导。