随着数字化转型全面展开,使用的代码量也随之急剧增加,同时也意味着攻击面也在增加。这给软件研发和安全团队带来了挑战。提前了解常见漏洞的现状和趋势可以帮助他们提前部署,防患未然。
新思科技(Synopsys, Nasdaq: SNPS)近日发布了《2023年软件漏洞快照》报告。新思科技网络安全研究中心 (CyRC) 分析的数据显示,目标应用中发现的漏洞显著减少——从 2020 年的 97% 下降到 2022 年的 83%——这是一个令人鼓舞的迹象,表明代码审查、自动化测试和持续集成有助于减少常见的编程错误。
该报告详细介绍了由新思科技安全测试服务运行的测试汇总出的三年数据(2020 年至 2022 年),测试目标包括 Web 应用、移动应用、网络系统和源代码。测试结合多种安全技术,包括渗透测试、动态应用安全测试 (DAST)、移动应用安全测试 (MAST) 和网络安全测试,旨在探测在真实环境不法分子会如何攻击正在运行的应用。
虽然行业采取积极措施应对软件漏洞,数据表明,依靠静态应用安全测试 (SAST) 等单一工具作为解决方案的方法已不再适用。例如,服务器配置错误平均占三年测试中发现的漏洞总数的 18%。如果没有结合多层安全措施,例如SAST识别编码缺陷、DAST检查正在运行的应用、软件组成分析(SCA)识别第三方组件引入的漏洞以及渗透测试识别内部测试可能遗漏的问题,这些类型的漏洞可能会无法检测出来。
新思科技质量与安全部门总经理Jason Schmitt表示:“多年来我们第一次看到软件中已知漏洞的数量有所下降,这给企业带来了新希望。他们严肃对待安全问题,并优先考虑对软件安全部署全面的策略,以持续确保安全。随着黑客变得越来越老练,我们比以往任何时候都更需要采取多层安全措施,以识别软件风险所在并保护企业免遭利用。”
《2023年软件漏洞快照》报告还发现:
点击这里,下载《2023年软件漏洞快照》报告。
好文章,需要你的鼓励
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。