德国研究人员为光伏材料开发出数字孪生模型,据称有助于提高太阳能行业及相关研究中重要发现的成功概率。这套数字孪生将机器学习技术与工程用物理模型结合了起来。
德国埃尔兰根纽伦堡弗里德里希亚历山大大学的研究人员为光伏材料开发出数字孪生,旨在加快光伏制造产业的创新步伐。
所谓数字孪生,是用于在工程科学领域定义现有实体资产的数字对应模型。与多尺度仿真的概念有所不同,数字孪生往往利用实时传感器加物理模型评估物理资产的当前及未来状态。
这篇研究论文的通讯作者Ian Marius Peters向《光伏杂志》介绍称,“我们尝试将高通量实验与科学理论联系起来。我们设想的数字孪生不仅对应实体实验基础设施,其本身也属于基础设施中的组成部分。我们希望解决为光伏应用设计全新材料这一重大挑战,涵盖从分子设计到太阳能电池集成的完整流程。为了实现这一目标,我们必须找到对多种分子、加工条件、层堆叠及运行条件进行快速分类的可行方法。”
根据Peters的解释,其中的关键在于将高能量(HT)实验与科学理论结合起来。“从数学角度讲,也就是对不同时间与长度等尺度层面的多个关联过程进行优化。我们的现有数字孪生是多种模型及优化例程的组合产物,包括贝叶斯优化和高斯过程回归。这一切都是为了在不同阶段提供实验数据,从而实现这种优化。”
该工具的目标在于让研究人员和制造商能够跨各个阶段进行信息流动。Peters补充称,“例如,如果希望找到一种可通过某种过程满足可回收需求的材料,我们就会将这些信息输入到数字孪生当中,从而根据相应的回收边界条件来推进分子设计过程。”
在《焦耳》杂志上发表的《利用数字孪生克服光伏领域的长期挑战》论文中,Peters和他的同事们解释称,传统光伏研究中的创新往往属于“偶然”发现,并表示未来颠覆性发现几率将越来越低。而文章探讨的数字孪生方法强调缩小第一原理计算与实验之间的差距,借此增加发现数量,确保在不具备给定资产直接信息的情况下进行“有依据的”决策。
文章所提出数字孪生的最大特征,主要包括冗余拒绝、不确定性量化以及实时预测。它依赖于材料加速平台(MAP),能够将实验空间划分为分子、薄膜与设备并加以利用。
该研究小组解释道,“数字孪生旨在提供逆向分子与工艺设计能力,帮助研究人员发现符合第一原理并具有全新特性的材料,满足当前看似相互矛盾的各种要求。数字孪生将使我们能够利用高通量、强大且快速的代理实验,通过级联代理来预测跨尺度属性并整理出经过优化的解决方案。”
展望未来,科学家们表示跨实验室与跨尺度合并对于改善第一原理建模中的数据验证与参数化处理至关重要。
此外,他们还希望建立材料设计优化流程。研究人员最后总结道,“通过增强数字孪生在不确定条件下的优化能力,我们将保证它能充分运用现有知识为高质量材料的设计工作提供高效可靠的解决方案。”
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。