德国研究人员为光伏材料开发出数字孪生模型,据称有助于提高太阳能行业及相关研究中重要发现的成功概率。这套数字孪生将机器学习技术与工程用物理模型结合了起来。
德国埃尔兰根纽伦堡弗里德里希亚历山大大学的研究人员为光伏材料开发出数字孪生,旨在加快光伏制造产业的创新步伐。
所谓数字孪生,是用于在工程科学领域定义现有实体资产的数字对应模型。与多尺度仿真的概念有所不同,数字孪生往往利用实时传感器加物理模型评估物理资产的当前及未来状态。
这篇研究论文的通讯作者Ian Marius Peters向《光伏杂志》介绍称,“我们尝试将高通量实验与科学理论联系起来。我们设想的数字孪生不仅对应实体实验基础设施,其本身也属于基础设施中的组成部分。我们希望解决为光伏应用设计全新材料这一重大挑战,涵盖从分子设计到太阳能电池集成的完整流程。为了实现这一目标,我们必须找到对多种分子、加工条件、层堆叠及运行条件进行快速分类的可行方法。”
根据Peters的解释,其中的关键在于将高能量(HT)实验与科学理论结合起来。“从数学角度讲,也就是对不同时间与长度等尺度层面的多个关联过程进行优化。我们的现有数字孪生是多种模型及优化例程的组合产物,包括贝叶斯优化和高斯过程回归。这一切都是为了在不同阶段提供实验数据,从而实现这种优化。”
该工具的目标在于让研究人员和制造商能够跨各个阶段进行信息流动。Peters补充称,“例如,如果希望找到一种可通过某种过程满足可回收需求的材料,我们就会将这些信息输入到数字孪生当中,从而根据相应的回收边界条件来推进分子设计过程。”
在《焦耳》杂志上发表的《利用数字孪生克服光伏领域的长期挑战》论文中,Peters和他的同事们解释称,传统光伏研究中的创新往往属于“偶然”发现,并表示未来颠覆性发现几率将越来越低。而文章探讨的数字孪生方法强调缩小第一原理计算与实验之间的差距,借此增加发现数量,确保在不具备给定资产直接信息的情况下进行“有依据的”决策。
文章所提出数字孪生的最大特征,主要包括冗余拒绝、不确定性量化以及实时预测。它依赖于材料加速平台(MAP),能够将实验空间划分为分子、薄膜与设备并加以利用。
该研究小组解释道,“数字孪生旨在提供逆向分子与工艺设计能力,帮助研究人员发现符合第一原理并具有全新特性的材料,满足当前看似相互矛盾的各种要求。数字孪生将使我们能够利用高通量、强大且快速的代理实验,通过级联代理来预测跨尺度属性并整理出经过优化的解决方案。”
展望未来,科学家们表示跨实验室与跨尺度合并对于改善第一原理建模中的数据验证与参数化处理至关重要。
此外,他们还希望建立材料设计优化流程。研究人员最后总结道,“通过增强数字孪生在不确定条件下的优化能力,我们将保证它能充分运用现有知识为高质量材料的设计工作提供高效可靠的解决方案。”
好文章,需要你的鼓励
本文探讨了一种防范通用人工智能(AGI)和人工超级智能(ASI)存在性风险的方法:将它们置于计算机仿真世界中进行测试。虽然这种方法看似合理,但存在诸多挑战。AGI可能会隐藏恶意行为,或因被欺骗而转向恶意。此外,仿真环境可能无法完全模拟真实世界,导致测试结果不准确。构建高质量仿真系统的成本和技术难度也不容忽视。文章认为,仿真测试虽有价值,但并非万能解决方案。
这项研究关注语音中的句子强调(即说话时对特定词的重音),它能传达说话者的潜在意图。耶路撒冷希伯来大学的研究团队发现,尽管现代语音语言模型进步显著,它们在理解句子强调方面表现不佳。团队创建了StressTest基准测试和Stress-17k合成数据集,并开发了StresSLM模型,使强调理解能力大幅提升。研究表明,通过特定训练策略,可以让AI不仅理解"说了什么",还能理解"怎么说的",从而捕捉人类交流中的微妙含义。
尽管AI在围棋等复杂游戏中表现出色,但在简单的井字棋游戏中却屡屡失败。研究显示,AI代理在模拟商业环境中的表现同样令人失望,经常出现幻觉、欺骗和任务未完成等问题。游戏测试为评估AI能力提供了直观方式,帮助普通用户理解AI的真实水平。面对当前AI行业的过度宣传,通过游戏化测试揭示AI的实际局限性,对于防范AI泡沫具有重要意义。
ViStoryBench是一个全面的故事可视化评估基准,由StepFun团队打造,用于测试AI将文字故事转化为连贯图像序列的能力。它包含80个多样化故事和344个角色参考,评估包括角色一致性、提示遵循度等多个维度。研究测试了20多种方法,发现UNO在开源方法中表现最佳,而商业软件如豆包和GPT-4o在提示一致性方面表现突出。该基准为故事可视化研究提供了统一标准,推动这一领域的创新发展。