亚马逊网络服务公司(Amazon Web Services Inc.)近日宣布,计划通过旗下Amazon Bedrock服务提供来自知名机器学习初创公司Mistral AI的两个人工智能模型。
Bedrock于去年4月推出,通过应用程序编程接口提供对托管基础模型的访问。开发人员可以使用API来测试可用的神经网络中有哪一个最适合给定项目,然后将其集成到自己的软件之中。
总部位于巴黎的Mistral获得了超过5亿美元的资金支持。它通过Bedrock提供的两种AI算法——Mistral 7B和Mixtral 8x7B,两者都是开源的大型语言模型。它们针对的是相似的用例,但设计和功能却大相径庭。
Mixtral 8x7B是Mistral最先进的LLM,于12月首次亮相,不久后该公司宣布了最新一轮4.15亿美元的融资。它可以支持聊天机器人,总结文档并生成代码。在内部比对期间,该模型在所评估的大多数基准测试中都优于OpenAI的ChatGPT 3.5。
Mixtral 8x7B采用了被称为专家混合架构的LLM设计。该模型由八个不同的神经网络或“专家”组成,每个神经网络都针对一组不同的任务进行了优化。当Mixtral 8x7B收到用户提问时,它会识别出最适合生成答案的两个神经网络并激活它们。
基于混合专家设计的LLM运行需要的硬件数量相对有限。由于Mixtral 8x7B在回答用户提问时仅激活其八个神经网络中的两个,因此其余六个神经网络不使用任何处理能力。其结果是与传统的LLM相比,降低了基础设施成本,后者在处理提问时激活了所有软件组件。
Mixtral 8x7B的八个神经网络具有467亿个参数。Mistral 7B是该公司通过Bedrock向AWS客户提供的第二个LLM,其设计更简单,只有70亿个参数。它面向特别强调硬件效率的应用程序。
AWS的首席开发人员倡导者Donnie Prakoso在一篇博客文章中详细介绍道,“Mistral 7B是Mistral AI 的第一个基础模型,自然编码功能支持英文文本生成任务。”“它针对低延迟进行了优化,内存要求低,吞吐量高。”
Mistral的两个开源LLM加入了Bedrock已经上架的至少六个基础模型的行列,已经上市。这些已经上架的模型有部分是AWS开发的——即Amazon Titan系列。Bedrock还提供了Meta Platforms Inc.、Anthropic PBC 和其他市场主流玩家托管的神经网络。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。