亚马逊网络服务公司(Amazon Web Services Inc.)近日宣布,计划通过旗下Amazon Bedrock服务提供来自知名机器学习初创公司Mistral AI的两个人工智能模型。
Bedrock于去年4月推出,通过应用程序编程接口提供对托管基础模型的访问。开发人员可以使用API来测试可用的神经网络中有哪一个最适合给定项目,然后将其集成到自己的软件之中。
总部位于巴黎的Mistral获得了超过5亿美元的资金支持。它通过Bedrock提供的两种AI算法——Mistral 7B和Mixtral 8x7B,两者都是开源的大型语言模型。它们针对的是相似的用例,但设计和功能却大相径庭。
Mixtral 8x7B是Mistral最先进的LLM,于12月首次亮相,不久后该公司宣布了最新一轮4.15亿美元的融资。它可以支持聊天机器人,总结文档并生成代码。在内部比对期间,该模型在所评估的大多数基准测试中都优于OpenAI的ChatGPT 3.5。
Mixtral 8x7B采用了被称为专家混合架构的LLM设计。该模型由八个不同的神经网络或“专家”组成,每个神经网络都针对一组不同的任务进行了优化。当Mixtral 8x7B收到用户提问时,它会识别出最适合生成答案的两个神经网络并激活它们。
基于混合专家设计的LLM运行需要的硬件数量相对有限。由于Mixtral 8x7B在回答用户提问时仅激活其八个神经网络中的两个,因此其余六个神经网络不使用任何处理能力。其结果是与传统的LLM相比,降低了基础设施成本,后者在处理提问时激活了所有软件组件。
Mixtral 8x7B的八个神经网络具有467亿个参数。Mistral 7B是该公司通过Bedrock向AWS客户提供的第二个LLM,其设计更简单,只有70亿个参数。它面向特别强调硬件效率的应用程序。
AWS的首席开发人员倡导者Donnie Prakoso在一篇博客文章中详细介绍道,“Mistral 7B是Mistral AI 的第一个基础模型,自然编码功能支持英文文本生成任务。”“它针对低延迟进行了优化,内存要求低,吞吐量高。”
Mistral的两个开源LLM加入了Bedrock已经上架的至少六个基础模型的行列,已经上市。这些已经上架的模型有部分是AWS开发的——即Amazon Titan系列。Bedrock还提供了Meta Platforms Inc.、Anthropic PBC 和其他市场主流玩家托管的神经网络。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。