亚马逊网络服务公司(Amazon Web Services Inc.)近日宣布,计划通过旗下Amazon Bedrock服务提供来自知名机器学习初创公司Mistral AI的两个人工智能模型。
Bedrock于去年4月推出,通过应用程序编程接口提供对托管基础模型的访问。开发人员可以使用API来测试可用的神经网络中有哪一个最适合给定项目,然后将其集成到自己的软件之中。
总部位于巴黎的Mistral获得了超过5亿美元的资金支持。它通过Bedrock提供的两种AI算法——Mistral 7B和Mixtral 8x7B,两者都是开源的大型语言模型。它们针对的是相似的用例,但设计和功能却大相径庭。
Mixtral 8x7B是Mistral最先进的LLM,于12月首次亮相,不久后该公司宣布了最新一轮4.15亿美元的融资。它可以支持聊天机器人,总结文档并生成代码。在内部比对期间,该模型在所评估的大多数基准测试中都优于OpenAI的ChatGPT 3.5。
Mixtral 8x7B采用了被称为专家混合架构的LLM设计。该模型由八个不同的神经网络或“专家”组成,每个神经网络都针对一组不同的任务进行了优化。当Mixtral 8x7B收到用户提问时,它会识别出最适合生成答案的两个神经网络并激活它们。
基于混合专家设计的LLM运行需要的硬件数量相对有限。由于Mixtral 8x7B在回答用户提问时仅激活其八个神经网络中的两个,因此其余六个神经网络不使用任何处理能力。其结果是与传统的LLM相比,降低了基础设施成本,后者在处理提问时激活了所有软件组件。
Mixtral 8x7B的八个神经网络具有467亿个参数。Mistral 7B是该公司通过Bedrock向AWS客户提供的第二个LLM,其设计更简单,只有70亿个参数。它面向特别强调硬件效率的应用程序。
AWS的首席开发人员倡导者Donnie Prakoso在一篇博客文章中详细介绍道,“Mistral 7B是Mistral AI 的第一个基础模型,自然编码功能支持英文文本生成任务。”“它针对低延迟进行了优化,内存要求低,吞吐量高。”
Mistral的两个开源LLM加入了Bedrock已经上架的至少六个基础模型的行列,已经上市。这些已经上架的模型有部分是AWS开发的——即Amazon Titan系列。Bedrock还提供了Meta Platforms Inc.、Anthropic PBC 和其他市场主流玩家托管的神经网络。
好文章,需要你的鼓励
周一AWS美东数据中心DNS故障导致数百万用户和上千家企业断网,Reddit、Snapchat、银行和游戏平台均受影响。专家认为这凸显了冗余备份的重要性,CIO需要根据业务关键性进行风险评估,优先保护核心系统。单一供应商策略仍可行,但需通过多区域部署分散风险,建立故障转移计划。金融、医疗等高风险行业需更高冗余级别。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
英国政府发布新的反勒索软件指导文件,旨在解决供应链安全薄弱环节。该指南与新加坡当局联合制定,帮助组织识别供应链问题并采取实际措施检查供应商安全性。英国国家网络安全中心过去一年处理了204起"国家重大"网络安全事件。指南强调选择安全可靠的供应商、加强合同网络安全条款、进行独立审计等措施,以提升供应链韧性和防范网络攻击。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。