全新 JFrog Artifactory 集成为开发人员和数据科学家提供开源软件解决方案,可简化并安全加速 ML 模型开发
2024年5月7日 —— 流式软件公司、JFrog 软件供应链平台的缔造者JFrog (纳斯达克股票代码:FROG)近期宣布实现JFrog Artifactory和Databricks开发的开源软件平台MLflow的全新机器学习(ML)生命周期集成。继今年早些时候发布与 Qwak 和 Amazon SageMaker 的原生集成后,JFrog 扩展了其通用AI解决方案,为企业提供以 Artifactory 作为模型注册中心的单一记录系统。这项全新集成让 JFrog 用户在简化的端到端 DevSecOps 工作流中,结合所有其他软件开发组件,高效地构建、管理和交付 ML 模型以及生成式AI(GenAI)驱动的应用程序。通过确保每个模型不可变性和可追溯性,企业可以验证 ML 模型的安全性和来源,从而发展负责任的AI实践。
行业研究表明,为创建新的AI驱动应用程序而构建的 ML 模型中,有 80% 或更多的模型无法部署,这主要是由于将模型集成到当前操作时存在技术障碍。JFrog与MLflow的集成通过将MLflow常用的开源模型开发解决方案与企业成熟的DevOps工作流无缝结合,帮助企业克服技术难题。从实验到生产,这一集成为ML模型提供端到端的可视性、自动化、可控性和可追溯性。
JFrog首席技术官Yoav Landman表示: “企业要想成功地接受并大规模交付AI和GenAI驱动的应用,开发人员和数据科学团队就必须像管理所有软件包一样,以可信赖的方式对模型进行管理。唯有使用一个通用的、可扩展的、统一针对所有二进制文件的单一记录系统才能实现这一目标,该系统可提供版本控制、生命周期控制和安全控制,而我们与MLflow的新集成可提供这些功能。”
JFrog MLOps:所有模型的单一事实来源
基于与市场上所有主要ML工具的成功集成,JFrog Artifactory 和 MLflow 的集成使 ML 工程师、Python、Java 和 R 开发人员能够自由地使用自己偏好的工具堆栈,并将 Artifactory 作为其黄金标准模型注册表。JFrog 的通用可扩展平台还能够原生代理 Hugging Face,使开发人员能够始终访问可用的开源模型,同时检测恶意模型并执行许可合规性。该解决方案还配备了JFrog平台提供的软件安全功能和扫描仪,以维护无风险的ML应用。
MLSecOps —— 值得信赖且经过策划的模型
JFrog安全研究团队最近在公开的Hugging Face AI库中发现了数百个恶意AI ML模型的实例,这构成了数据泄露或攻击的重大风险。这一事件凸显了潜伏于AI驱动系统中的潜在威胁,并强调了增强安全意识和维护网络安全的必要性。
JFrog Artifactory 与 MLflow 的集成将助力用户更轻松地构建、训练和部署模型,并利用 JFrog 的扫描环境,严格检查上传到 Hugging Face 的每个新模型,从而在安全性、模型管理、版本控制、可追溯性和信任度等方面实现更大的优化。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。