市场上有很多生成式AI平台的选择,为什么要选择红帽?
红帽总裁兼CEO Matt Hicks直言红帽的不同之处在于运行位置的核心灵活性。企业既可以对小型开源模型进行混合部署,也可以在公有云或自有数据中心训练模型,同时支持主要的GPU供应商。
最近在Red Hat Summit上,红帽发布了一系列与人工智能相关的内容,包括Linux AI(RHEL AI)和OpenShift AI的最新进展。
Matt Hicks表示,RHEL用于运行所有可以在Linux上运行的应用程序,RHEL AI则用于运行你可以通过训练和定制的大型语言模型的AI部分。OpenShift用于管理可以在RHEL上以分布式方式跨集群运行的所有应用程序,OpenShift AI则以相同的方式管理一系列模型,高效地分割训练、使用和提供服务。
红帽总裁兼CEO Matt Hicks
Linux AI(RHEL AI)开源AI的创新
RHEL AI是一个基础模型平台,能够使用户更加便捷地开发、测试和部署生成式人工智能(GenAI)模型。该解决方案被封装成一个优化的、可启动的RHEL镜像,用于在混合云环境中部署单个服务器,并已集成到OpenShift AI中。
在意识到IBM研究院开发的大规模对话机器人对齐(LAB)技术能显著提升模型性能后,IBM和红帽决定推出InstructLab,这是一个围绕LAB方法和IBM开源Granite模型构建的开源社区。InstructLab项目的目标是使开发者通过简化LLM的创建、构建和贡献过程,像参与任何其他开源项目一样,将LLM开发的权力交到开发者手中。
RHEL AI融合了企业级就绪的InstructLab项目和Granite语言与代码模型,及全球领先的企业级Linux平台,简化了混合基础设施环境中的部署。RHEL AI包括:
“RHEL AI的主要目标是利用硬件加速,进行模型的训练和运行。”Matt Hicks说,RHEL AI更专注于为大型语言模型创建业务安全、管理生命周期和提供可预测性,并使企业能够对其进行修改。
OpenShift AI增强预测性和生成式AI的灵活性
红帽OpenShift AI是基于红帽OpenShift构建的开放式混合人工智能(AI)和机器学习(ML)平台,帮助企业在混合云环境中大规模创建并交付人工智能支持的应用。
红帽OpenShift AI引入了新的增强功能,包括获取最新的AI/ML创新和以人工智能为中心的庞大合作伙伴生态系统的支持。最新版本红帽OpenShift AI 2.9,提供了边缘模型服务、增强型模型服务、采用Ray支持分布式工作负载、改进模型开发、模型监控和可视化、新的加速器配置文件。
在Matt Hicks看来,构建一个坚实的混合云基础对企业AI至关重要。许多企业尝试使用规模较小的模型进行微调和训练,但往往成效不佳。所以他们会转向“全知模型”——通常在公共云中运行的模型,参数量超过一万亿,这些模型虽然是开箱即用,但运行和训练成本相当之高。
无论是在笔记本、边缘还是任何地方,混合云对云充分发挥AI的潜力都是关键。企业必须改进这些小型模型,使其更好地适应实际任务,这就需要在特定用例上完成最后一段训练。
Red Hat Summit上红帽展示了在开放混合云中赋能人工智能战略,支持人工智能工作负载在数据所在的地方运行,无论是在数据中心、多个公有云或边缘。红帽的平台为这些工作负载提供跨环境的一致性,无论它们在何处运行,都可以顺利推进企业的人工智能创新。
好文章,需要你的鼓励
2025施耐德电气智算峰会上,全新EcoStruxure(TM) Energy Operation电力综合运营系统正式亮相,定位场站级智慧能源管理中枢,集技术领先性与本土适配性于一体。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
Atlassian、Intuit和AWS三大企业巨头正在为智能代理时代做准备,重新思考软件构建方式。当前企业API为人类使用而设计,未来API将成为多模型原生接口。Intuit在QuickBooks中应用自动发票生成,使企业平均提前5天收款;AWS通过AI辅助迁移服务显著提升效率;Atlassian推出内部员工入职代理和客户代理,节省大量时间成本。专家强调需要建立强大的数据架构和信任机制。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。