IBM研究院最近宣布对其Granite编码基础模型开源,目标是实现高级AI工具大众化,进而推动跨行业间代码编写、维护与开发方式的全面变革。
IBM的Granite编码模型是什么水平?
Granite源自IBM简化编码流程的勃勃雄心。在意识到软件开发中所固有的复杂性与快速开发需求之后,IBM利用其强大的科研能力构建起一套AI驱动工具,旨在帮助开发人员驾驭涵盖众多要素的编码环境。
这项工作的顶峰就是Granite编码模型,其参数规模在30亿到340亿之间,且针对代码生成、bug修复及代码解释等任务进行了微调,旨在提高软件开发工作流程中的生产力水平。
Granite模型通过将复杂的日常编码任务转为自动化以提高生产力。这不仅加快了开发流程,还帮助开发人员能够专注于软件开发中更具创造性与战略性的任务。对企业来说,Granite大模型则有助于加快产品上市速度、增强软件质量。
此外,其中还蕴藏着无限的创新潜能。如今开源社区已经能够修改并重构Granite模型,因此新的应用方案和配套工具可能陆续出现,进而重新定义软件开发中的现行标准与实践。
这些模型经由CodeNet的丰富数据集进行训练,其中包含涉及50多种编程语言的5亿行代码,以及代码片段、问题和描述。如此广阔的训练边界有助于模型更准确、更高效地理解并生成代码。
分析师观点
Granite模型通过将复杂的日常编码任务转为自动化以提高生产力。这不仅加快了开发流程,还帮助开发人员能够专注于软件开发中更具创造性与战略性的任务。对企业来说,Granite大模型则有助于加快产品上市速度、增强软件质量。
通过在GitHub、Hugging Face、watsonx.ai及Red Hat的RHEL AI等流行平台上交付这些强大的工具,IBM不仅扩大了潜在的用户规模,还有助于推动这些模型的协同开发与定制。
此外,其中还蕴藏着无限的创新潜能。如今开源社区已经能够修改并重构Granite模型,因此新的应用方案和配套工具可能陆续出现,进而重新定义软件开发中的现行标准与实践。
此举将带来深远的影响。首先,这显著降低了在软件开发流程中应用最先进AI工具的准入门槛。初创企业与独立开发者现在也可以访问到与商业巨头相同的强大资源,从而建立起公平的竞争环境、培育出更具活力和创新热情的开发社区。
IBM的方法不仅扩大了高级编码工具的可访问性,而且还为技能水平及可用资源各异的开发者营造出更加包容的环境。
从竞争的角度来看,IBM被定位为AI驱动的编码领域领导者,直接挑战其他也在探索类似领域、但可能尚未参与模型开源的科技巨头。通过在GitHub和Hugging Face等流行平台上发布Granite模型,IBM得以将自家方案推向开发人员的日常场景,从而提高其在软件开发社区中的影响力与知名度。
IBM此番开源的Granite模型有望对企业效率及开发者生产力带来巨大影响,进而为软件开发工具中的AI集成树立起新的基准。
 0赞
0赞好文章,需要你的鼓励
 推荐文章
                    推荐文章
                  AI实验室不再与企业签署昂贵的数据合同,而是通过Mercor平台招募前员工获取行业知识。Mercor为投资银行、咨询公司和律所的前员工与OpenAI、Anthropic等AI实验室搭建桥梁,向行业专家支付高达每小时200美元来训练AI模型。该公司年化经常性收入达5亿美元,估值100亿美元,每天向承包商支付超150万美元。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
作为AI热潮的最大受益者,英伟达成为首家市值突破5万亿美元里程碑的上市公司。受特朗普总统表示将与习近平主席讨论该公司Blackwell芯片消息推动,公司股价周三上涨超过5.6%。英伟达CEO黄仁勋预计AI芯片销售额将达5000亿美元,并为美国建设七台新超级计算机。该公司还投资10亿美元于诺基亚,用于AI原生5G和6G网络开发。这一里程碑距离突破4万亿美元仅三个月。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。
 
             
                 
                     
                     
                    