IBM研究院最近宣布对其Granite编码基础模型开源,目标是实现高级AI工具大众化,进而推动跨行业间代码编写、维护与开发方式的全面变革。
IBM的Granite编码模型是什么水平?
Granite源自IBM简化编码流程的勃勃雄心。在意识到软件开发中所固有的复杂性与快速开发需求之后,IBM利用其强大的科研能力构建起一套AI驱动工具,旨在帮助开发人员驾驭涵盖众多要素的编码环境。
这项工作的顶峰就是Granite编码模型,其参数规模在30亿到340亿之间,且针对代码生成、bug修复及代码解释等任务进行了微调,旨在提高软件开发工作流程中的生产力水平。
Granite模型通过将复杂的日常编码任务转为自动化以提高生产力。这不仅加快了开发流程,还帮助开发人员能够专注于软件开发中更具创造性与战略性的任务。对企业来说,Granite大模型则有助于加快产品上市速度、增强软件质量。
此外,其中还蕴藏着无限的创新潜能。如今开源社区已经能够修改并重构Granite模型,因此新的应用方案和配套工具可能陆续出现,进而重新定义软件开发中的现行标准与实践。
这些模型经由CodeNet的丰富数据集进行训练,其中包含涉及50多种编程语言的5亿行代码,以及代码片段、问题和描述。如此广阔的训练边界有助于模型更准确、更高效地理解并生成代码。
分析师观点
Granite模型通过将复杂的日常编码任务转为自动化以提高生产力。这不仅加快了开发流程,还帮助开发人员能够专注于软件开发中更具创造性与战略性的任务。对企业来说,Granite大模型则有助于加快产品上市速度、增强软件质量。
通过在GitHub、Hugging Face、watsonx.ai及Red Hat的RHEL AI等流行平台上交付这些强大的工具,IBM不仅扩大了潜在的用户规模,还有助于推动这些模型的协同开发与定制。
此外,其中还蕴藏着无限的创新潜能。如今开源社区已经能够修改并重构Granite模型,因此新的应用方案和配套工具可能陆续出现,进而重新定义软件开发中的现行标准与实践。
此举将带来深远的影响。首先,这显著降低了在软件开发流程中应用最先进AI工具的准入门槛。初创企业与独立开发者现在也可以访问到与商业巨头相同的强大资源,从而建立起公平的竞争环境、培育出更具活力和创新热情的开发社区。
IBM的方法不仅扩大了高级编码工具的可访问性,而且还为技能水平及可用资源各异的开发者营造出更加包容的环境。
从竞争的角度来看,IBM被定位为AI驱动的编码领域领导者,直接挑战其他也在探索类似领域、但可能尚未参与模型开源的科技巨头。通过在GitHub和Hugging Face等流行平台上发布Granite模型,IBM得以将自家方案推向开发人员的日常场景,从而提高其在软件开发社区中的影响力与知名度。
IBM此番开源的Granite模型有望对企业效率及开发者生产力带来巨大影响,进而为软件开发工具中的AI集成树立起新的基准。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。