英伟达近日发布了一款轻量级语言模型Mistral-NeMo-Minitron 8B,该模型在一系列任务中的表现均优于同等规模的神经网络。
该模型的代码以开源许可的形式发布在Hugging Face网站上。该模型发布的前一天,微软刚刚推出了几个自己的开源语言模型。与英伟达的新算法一样,这些新模型也是为了在处理能力有限的设备上运行而设计的。
Mistral-NeMo-Minitron 8B是英伟达上个月推出的Mistral NeMo 12B语言模型的缩小版。后者是与Mistral AI SAS合作开发的算法,Mistral AI SAS是一家人工智能初创公司,已经募集了大量的资金。英伟达利用了两种名为“剪枝”和“提炼”的机器学习技术创建了Mistral-NeMo-Minitron 8B。
“剪枝”是一种通过删除代码库中不必要的组件来降低模型硬件要求的方法。神经网络由无数个人工神经元组成,每个人工神经元的代码片段都能执行一组相对简单的计算。其中一些代码片段在处理用户请求时发挥的作用不如其他代码片段活跃,这意味着可以在不显著降低人工智能输出质量的情况下删除这些代码片段。
在对 Mistral NeMo 12B进行“剪枝”后,英伟达进入了该项目的所谓“提炼”阶段。“提炼”是工程师将人工智能知识转移到另一个硬件效率更高的神经网络的过程。在这种情况下,第二个模型就是今天亮相的Mistral-NeMo-Minitron 8B,它比原来的模型少了40亿个参数。
开发人员还可以通过从头开始训练一个全新的模型来降低人工智能项目的硬件要求。与这种方法相比,“提炼”有几个优势,尤其是能提高人工智能的输出质量。将大型模型“提炼”为小型模型的成本也更低,因为这项任务不需要那么多训练数据。
英伟达表示,在开发过程中结合使用“剪枝”和“提炼”技术显著提高了Mistral-NeMo-Minitron 8B 的效率。英伟达的高管Kari Briski在一篇博文中介绍说,“其体积小到足以在配备了Nvidia RTX的工作站上运行,同时在人工智能支持的聊天机器人、虚拟助手、内容生成器和教育工具的多个基准测试中依然表现出色。”
Mistral-NeMo-Minitron 8B发布的前一天,微软刚刚开源了自己的三个语言模型。与英伟达的新算法一样,它们的开发也考虑到了硬件效率。
这些模型中最紧凑的名为Phi-3.5-mini-instruct。它拥有38亿个参数,可以处理多达 128,000个标记的数据提示,这使它能够摄取冗长的商业文档。微软进行的一项基准测试表明,Phi-3.5-mini-instruct在执行某些任务时比Llama 3.1 8B和Mistral 7B更出色,而后两者的参数数量大约是前者的两倍。
本周二,微软还开源了另外两个语言模型。第一个是Phi-3.5-vision-instruct,它是Phi-3.5-mini-instruct的一个版本,可以执行图像分析任务,比如解释用户上传的图表。它与Phi-3.5-MoE-instruct同时推出,后者是一个更大的模型,拥有608亿个参数。当用户输入提示时,只有十分之一的参数会激活,这大大减少了推理所需的硬件数量。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。