本周,Foodnoms迎来了一次重大更新,完全革新了快捷指令(Shortcuts)集成功能。
Foodnoms的最新版本带来了横跨八个不同类别的44个新快捷指令操作。这包括记录食物、追踪和修改目标、创建和管理餐食等功能的操作。
在宣布更新的博客文章中,Foodnoms开发者Ryan Ashcraft表示,目标是"创造一种无与伦比的自动化体验,使营养追踪比以往更加便捷和灵活。"
"我们已经为这次更新努力了数月,不断完善细节并推动当前API所能实现的边界。我们的目标是创造一种无与伦比的自动化体验,使营养追踪比以往更加便捷和灵活。我们很高兴今天终于能够向您提供这一功能。"
此外,Foodnoms更新还包括九个新的应用快捷指令,可通过快捷指令应用、Spotlight和Siri访问:
Foodnoms还与大家最喜爱的快捷指令专家Matthew Cassinelli合作,为Foodnoms用户创建了七个预构建的快捷指令。您可以在Foodnoms网站上查看这些快捷指令。
最后,正如Ryan所解释的,这次Foodnoms的更新确保了应用"为Apple Intelligence做好了未来准备"。
您可以在Foodnoms网站上了解更多关于今天更新的信息,还可以观看几个新快捷指令功能的实际应用示例。该应用可在App Store下载。
好文章,需要你的鼓励
传统AI依赖云端处理存在延迟和隐私问题。越来越多开发者将AI处理从数据中心转移到手机、笔记本等个人设备上。设备端AI具有三大优势:速度更快,无需等待云端响应;隐私更安全,数据不离开设备;成本更低,无需支付云服务费用。目前iPhone已运行30亿参数的设备端AI模型,谷歌Pixel手机也搭载Gemini Nano模型。未来五年内,随着硬件升级和算法优化,设备端AI将实现物体识别、导航翻译等更复杂功能。
新加坡国立大学联合Lovart AI开发的OmniPSD系统,首次实现了AI驱动的双向PSD文件处理能力。该系统能够将扁平图像自动分解为可编辑的图层结构,同时支持从文字描述直接生成分层设计文件。基于扩散变换器架构和创新的RGBA-VAE技术,OmniPSD在20万真实设计样本上训练,实现了专业级的透明度处理和图层分解效果,为设计行业的数字化转型提供了强大工具。
卡内基梅隆大学研究人员开发了一项革命性技术,通过摄像头、AI模型和微型轮子,让咖啡杯、订书机等日常物品能够自主移动到需要的位置。这种"智能物品"技术避免了传统人形机器人的复杂性和安全隐患,通过蓝牙微控制器和AI视觉系统,物品能够识别用户行为并预测需求。虽然技术已相对成熟,但隐私保护和安全性仍是推广前需要解决的关键问题。
ByteDance Seed团队提出UniUGP统一框架,首次将自动驾驶的理解、生成、规划三大能力完美融合。通过混合专家架构和四阶段训练策略,该系统在场景理解、轨迹规划和视频生成等任务上均超越现有先进模型,为自动驾驶技术发展开辟了新路径,预示着更智能可靠的无人驾驶未来。