许多组织都在谈论 AI 转型,但真正能够快速落地 AI 应用的企业却寥寥无几。这很难不让人想起早年 SOA 架构的推广——概念很美好,但实现路径往往模糊不清。
如果我们长期关注企业架构演进,就会了解一个朴素的道理:没有稳固的基础设施,再美好的 AI 愿景也只是空中楼阁。当我们谈论 AI-ready 时,实际上是在讨论一个复杂的技术栈重构问题。
云迁移不仅仅是将工作负载从本地数据中心搬到云端,更是一次架构现代化的契机。太多企业因为急于追赶 AI 浪潮,却忽略了底层架构的债务清理,最终在数据孤岛、安全风险和成本失控中举步维艰。
对于技术决策者而言,开源技术栈的云迁移往往面临独特的挑战。Linux 工作负载、PostgreSQL 数据库、Java 应用——这些企业级应用的骨干组件,在云环境中需要重新审视其架构模式。
我们需要思考的不仅是"如何迁移",更是"如何在迁移过程中为未来的 AI 能力做准备"。这意味着在保持业务连续性的同时,逐步引入弹性扩展、自动化运维和数据管道等现代化能力。
当基础设施就绪后,AI 应用的开发就成为了下一个关键节点。但这里有一个常见的误区:许多团队将 AI 技术视为独立的技术组件,而非整个业务流程的有机组成部分。
智能体(Agents)的价值不在于技术本身的先进性,而在于它们如何与现有的客户体验、员工协作和业务流程深度融合。这需要我们从系统思维的角度重新设计应用架构,确保 AI 能力能够无缝集成到现有的业务逻辑中。
数据治理往往是最容易被忽视,却又最为关键的环节。数据就像建筑的地基——你可能看不见它,但它决定了你能建多高的楼。
统一数据平台的建设不是一个纯技术问题,更是一个组织协调问题。如何在保证数据安全和合规的前提下,实现跨部门的数据共享和实时洞察?如何构建既满足分析师需求,又能支撑机器学习工作负载的数据架构?这些都需要深思熟虑的设计决策。
让我们回到最初的问题:为什么有些企业能够快速实现 AI 技术转型,而另一些却陷入泥潭?答案往往在于他们是否采用了渐进式演进的策略。
成功的 AI 技术转型不是一蹴而就的革命,而是一系列有序的架构重构。从云迁移开始,通过现代化改造建立稳固的基础,然后逐步引入 AI 能力,最终实现数据驱动的智能决策。每一步都需要明确的评估标准、可控的试点范围和可衡量的业务价值。
这正是为什么我们需要一个系统性的学习机会,来厘清从云迁移到 AI 就绪的完整路径。理论很重要,但更重要的是来自一线的实践经验和可操作的方法清单。
两天四场,帮你和团队快速找到 AI-ready 的清晰路径!
为什么要来
课程安排
Day 1 | 09/23 周二
1、13:00-14:00
云迁移与现代化
敏捷 + 安全 + 成本优化,三重效益怎么实现?微软专家+行业案例带你梳理清晰路径。
2、14:00-15:00
Linux、PostgreSQL、Java 应用上云实战
迁移工具链、关键要点全解析,配套 Demo 和实践建议,帮你自信推进。
Day 2 | 09/24 周三
1、13:00-14:00
以 Azure AI 加速应用与智能体创新
AI 应用与 Agents 如何在客户体验、员工协作、业务流程中创造价值?这里有答案。
2、14:00-15:00
统一数据平台
数据是一切 AI 的地基。看看如何在 Azure 上统一、治理、保障数据,让企业真正用起来。
马上扫码注册!
2 天时间,收获完整方法清单
快人一步迈向 AI-ready
好文章,需要你的鼓励
尽管芯片厂商不断推出性能更强的神经处理单元,声称比上代产品快30-40%,但大多数AI功能仍依赖云端处理。专家指出,云端AI模型拥有数千亿参数,而手机NPU只能处理约30亿参数的模型。本地AI处理虽然在隐私保护和可靠性方面具有优势,但受限于内存容量和处理能力,目前主要应用于特定场景。业界正致力于优化模型压缩技术,实现云端与本地AI的混合处理模式。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Hammerspace通过现有NVMe存储最大化GPU使用率。随着AI计算在混合云和多云环境中扩展,基础设施团队面临着加速洞察时间同时最大化GPU投资的压力。Hammerspace Tier 0将GPU服务器集群内的本地NVMe存储转换为超高速共享存储层,性能比传统网络存储提升10倍,减少检查点时间,提高GPU使用率,改善推理响应时间,无需额外存储系统,节省数百万美元成本。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。