至顶网软件频道消息:谷歌和同属Alphabet集团专注于健康的Verily Life Sciences共同进行的一项研究表明,深度学习算法可以通过分析个体的视网膜照片准确预测心脏病。
这些公司的科学家在《自然-生物医学工程》(《Nature Biomedical Engineering》)上发表的一篇新论文中详细介绍了他们的发现:“通过深度学习视网膜眼底照片预测引起心血管疾病的危险因素”。
视网膜眼底照片包括眼睛的血管,这篇论文显示可以利用血管准确预测心血管疾病的危险因素,包括其人是否吸烟、血压、年龄、性别以及某人是否曾经有过心脏病发作。该算法也能够推断出一个人的种族,这也是心血管相关疾病的一个因素。
谷歌的大脑团队(Brain Team)产品经理Lily Peng写道:“用来自284,335名患者的数据对深度学习算法进行训练,我们能够通过视网膜照片对两个来自12,026名和999名患者的独立数据集进行心血管疾病危险因素的预测,而且预测的准确度高得惊人。”
这个数据集包括来自英国Biobank数据库的48101名患者和来自EyePACS数据库的236244名患者。
正如文章指出的那样,还有一些其他的方法可以通过患者的病史和血液样本评估心血管疾病的风险,但有时关键信息是缺失的,如胆固醇水平。
视网膜图像扫描可以为发现心脏疾病信号提供一种快速、廉价且无创的方式。
鉴于该算法可以准确预测风险因素,科学家们还训练该算法来预测主要心血管疾病的发作,如五年内心脏病发作。
Peng写道:“我们的算法能够在70%的时间内挑选出曾经发作过心血管疾病的患者。这种准确程度已经接近了其他的心血管疾病风险计算方式,而这些方式需要抽血测量胆固醇。”
研究人员还使用注意力图来研究算法如何进行预测,比如是否关注通过血管来预测年龄、吸烟状况和血压。
正如Peng所说,打开黑匣子并且解释清楚预测是如何进行的,应该会让医生对该算法更有信心。
Verily的心血管健康创新负责人Michael McConnell表示,这项研究很有前途的,但现在还处于早期阶段。
他指出:“在进入临床之前,必须还要完成更多的工作,在更大范围的患者群体中开发和验证这些发现。”
然而,如果进一步的研究证实了这些发现,视网膜图像的使用可以减少医生讨论患者预防措施的障碍。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。