至顶网软件频道消息: 微软日前开始在Azure里添加对NVIDIA GPU项目的新级别支持,此举可能令运行深度学习和其他高性能计算(HPC)工作负载的人受益。两家宣布推出配有GPU加速软件的预配置容器,可助数据科学家、开发人员和研究人员在运行HPC任务之前省掉许多整合和测试步骤。
客户可以选择35个GPU加速容器,可用于深度学习软件、HPC应用程序、HPC可视化工具等,这些工作负载都可以在以下配有NVIDIA GPU的微软 Azure实例类型上运行:
● NCv3(1、2或4个NVIDIA Tesla V100 GPU)
● NCv2(1、2或4个NVIDIA Tesla P100 GPU)
● ND(1、2或4个NVIDIA Tesla P40 GPU)
NVIDIA还提到,这些相同的NVIDIA GPU云(NGC)容器可以跨Azure实例类型工作,即使GPU类型或数量不同也可以跨Azure实例类型工作。微软Azure市场里有一个预先配置的Azure虚拟机映像,包含运行NGC容器所需的所有内容(https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview ) 。
微软今天还面向普通用户推出了“Azure CycleCloud”,可用于“创建、管理、操作和优化Azure中任何规模的HPC集群工具”。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。