微软公司日前发布了Phi-4的代码。Phi-4是一个可以生成文本并解决数学问题的小型语言模型。
微软上个月首次详细介绍了Phi-4模型。最初的Phi-4只能通过微软的Azure Foundry人工智能开发服务访问。现在,Phi-4模型可以从Hugging Face下载。Hugging Face是一个托管开源人工智能项目的热门网站。
Phi-4是微软于2023年推出的小型语言模型系列的第四代版本,拥有140亿个参数,这些参数设定决定了神经网络如何处理数据。微软的研究人员利用英伟达公司提供的1,920块H100图形处理器集群,花了21天训练Phi-4。
Phi-4模型基于行业标准的 Transformer 架构。Transformer架构是大多数大型语言模型的基础。Transformer 模型收到用户提示后会将输入分解为单个单词,并通过分析上下文的文本确定每个单词的含义。这种模型还会优先处理上下文文本中被认为最相关的部分。
Phi-4采用的是所谓纯解码器的Transformer架构变体。标准的Transformer模型会分析单词前后的文本来确定其含义。纯解码器模型则只关注单词之前的文本,从而减少了需要处理的数据量,降低了推理成本。
微软在一份研究论文中详细介绍了如何使用两种后训练优化技术提升Phi-4的输出质量。这两种方法分别被称为直接偏好优化和监督微调。两种方法都需要向语言模型提供示例,用于指导模型如何生成符合要求的即时响应。
微软在一次内部评估中将Phi-4与Llama 3.3 70B 进行了比较,后者的参数是Phi-4的五倍。微软表示,在常用的GPQA和MATH基准测试中,Phi-4的表现更好。GPQA和MATH两个测试数据集分别包含科学问题和数学问题。
在过去一年中,各大科技公司争相开源了越来越多的小型语言模型,Phi-4 也正式加入了这一行列。
谷歌公司去年二月推出了一系列名为 Gemma 的小型语言模型。Gemma系列模型的算法拥有20亿到270亿个参数。谷歌表示,270亿个参数的Gemma版本在性能上优于参数数量是其两倍的模型。
Meta Platforms 公司最近发布了两个参数少于 50 亿 Llama 3.2 模型。随后,Meta又开源了这些模型的更高效版本,这些版本实现了机器学习里的量化技术。量化技术可以压缩神经网络获取的数据,减少处理数据所需的硬件数量。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。