微软公司日前发布了Phi-4的代码。Phi-4是一个可以生成文本并解决数学问题的小型语言模型。
微软上个月首次详细介绍了Phi-4模型。最初的Phi-4只能通过微软的Azure Foundry人工智能开发服务访问。现在,Phi-4模型可以从Hugging Face下载。Hugging Face是一个托管开源人工智能项目的热门网站。
Phi-4是微软于2023年推出的小型语言模型系列的第四代版本,拥有140亿个参数,这些参数设定决定了神经网络如何处理数据。微软的研究人员利用英伟达公司提供的1,920块H100图形处理器集群,花了21天训练Phi-4。
Phi-4模型基于行业标准的 Transformer 架构。Transformer架构是大多数大型语言模型的基础。Transformer 模型收到用户提示后会将输入分解为单个单词,并通过分析上下文的文本确定每个单词的含义。这种模型还会优先处理上下文文本中被认为最相关的部分。
Phi-4采用的是所谓纯解码器的Transformer架构变体。标准的Transformer模型会分析单词前后的文本来确定其含义。纯解码器模型则只关注单词之前的文本,从而减少了需要处理的数据量,降低了推理成本。
微软在一份研究论文中详细介绍了如何使用两种后训练优化技术提升Phi-4的输出质量。这两种方法分别被称为直接偏好优化和监督微调。两种方法都需要向语言模型提供示例,用于指导模型如何生成符合要求的即时响应。
微软在一次内部评估中将Phi-4与Llama 3.3 70B 进行了比较,后者的参数是Phi-4的五倍。微软表示,在常用的GPQA和MATH基准测试中,Phi-4的表现更好。GPQA和MATH两个测试数据集分别包含科学问题和数学问题。
在过去一年中,各大科技公司争相开源了越来越多的小型语言模型,Phi-4 也正式加入了这一行列。
谷歌公司去年二月推出了一系列名为 Gemma 的小型语言模型。Gemma系列模型的算法拥有20亿到270亿个参数。谷歌表示,270亿个参数的Gemma版本在性能上优于参数数量是其两倍的模型。
Meta Platforms 公司最近发布了两个参数少于 50 亿 Llama 3.2 模型。随后,Meta又开源了这些模型的更高效版本,这些版本实现了机器学习里的量化技术。量化技术可以压缩神经网络获取的数据,减少处理数据所需的硬件数量。
好文章,需要你的鼓励
七年来,它经历了从云计算到大模型的技术跃迁,为数千家企业带来前沿技术解决方案。它的故事,正是一则关于“数字摆渡”的当代寓言。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
作为第一个向OpenAI进行风险投资的投资人(也是一个鹰派),Khosla在2019年向该公司投资了5000万美元,这笔投资如今价值超过40亿美元,成为其投资生涯中最具传奇色彩的案例之一。在这次深度访谈中,他预测人工智能将在未来15年内重塑几乎所有行业,到2040年将迎来一个"工作不再为生存而必须"的富足时代。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。