至顶网软件频道消息: 几乎所有Linux的开发工作都是公开进行的。少数例外情况之一是各大公司或黑客向Linux开发人员揭示未修补的安全漏洞。在这些情况下,这些问题首先在封闭的linux-distro列表中显示出来。现在,无论你是否相信,微软推出了自己的Linux发行版,并且已经提出要求加入这个受限制的安全列表。
这个列表——Linux-distros,包括来自FreeBSD、NetBSD的开发人员和大多数主要Linux发行商。包括Canonical、Debian、Red Hat、SUSE和云Linux供应商,例如Amazon Web Services(AWS)和Oracle。
该列表的目的是“报告和讨论尚未公开的安全问题(但即将公布)”。“即将”是指多久呢?该列表的维护人员要求安全漏洞在向组显示之后,保密期不超过14天。例如,英特尔的CPU Meltdown和Spectre安全漏洞就不会在linux-distros上讨论。已公开讨论的安全问题则在OSS-Security邮件列表中处理。
微软Linux内核开发人员Sasha Levin——是的,现在有这样的人——要求微软获得访问该列表的权利,简而言之,因为微软是Linux的发行商。
具体来说,微软提供了几个类似发行版的版本,这些版本不是现有发行版的衍生版本,而是基于开源组件。包括:
Ÿ Azure Sphere:这种基于Linux的物联网设备专用版本可以为已经部署的物联网设备提供安全更新。由于该项目即将结束公开预览并进入GA阶段,我们估计有数百万台这样的设备将被公开使用。
Ÿ 适用于Linux v2的Windows Subsystem(WSL2):这是一个基于Linux的发行版,在Windows主机上作为虚拟机运行。WSL2目前可供公众预览,并计划在2020年初进入GA阶段。
Ÿ Azure HDInsight和Azure Kubernetes服务等产品为基于Linux的发行版提供公共访问。
此外,Levin表示:“微软通过微软安全响应中心(MSRC)解决安全问题已经有数十年的历史了。虽然我们能够快速(<1-2小时)构建一个版本来解决已经披露的安全问题,但是在我们公开这些版本之前,需要进行大量的测试和验证。成为这个邮件列表的成员将为我们提供额外的时间,以进行广泛的测试。”
所有这些说法都很有道理。此外,Levin在讨论的后续报告中透露:“我们的云上的Linux使用已超过Windows,而且作为MSRC的副产品,我们已经开始接收来自用户和供应商的Linux代码问题的安全报告。对于Windows和Linux常见的问题(例如那些推测性硬件错误)也是如此。”
Linux稳定分支内核维护者Greg Kroah-Hartman支持Levin。 “他是一位长期的内核开发人员,几年来一直在帮助稳定的内核版本,对稳定的内核树具有完全写入权限。”
事实上,Kroah-Hartman“曾经在大约一年前建议微软加入linux-distros。”
“很明显,他们正在成为一家Linux发行商,很高兴看到他们现在会这样做。”
虽然有些人仍然将微软当成是Linux的敌人,但是微软似乎被视为一个完整的Linux开发合作伙伴。正如Canonical Linux内核工程师Tyler Hicks所写:“他们对更大的Linux社区有益,我觉得他们直接参与linux-distros会让其他成员受益。”
预计在未来几天内,将会对微软的会员请求进行投票。如果微软不被允许加入该列表,我会感到非常惊讶。
好文章,需要你的鼓励
OpenAI推出全新Sora应用,打造完全由AI生成视频的社交媒体平台。美国、加拿大、日本和韩国用户现可直接下载使用,无需邀请码,但该开放政策仅限时提供。其他地区用户仍需等待更广泛的开放或通过Discord等渠道获取邀请码。用户可使用ChatGPT账户登录,立即开始观看、分享和创建AI视频内容。
泰国SCBX公司研究团队首次针对泰语开发了语义对话结束检测技术,通过分析文字内容而非声音停顿来判断对话是否结束。研究比较了多种AI模型方案,发现微调的小型变压器模型能在110毫秒内做出准确判断,显著优于传统静音检测方法。该技术能识别泰语特有的句尾助词等语言特征,为银行客服、智能家居、教育等场景的语音交互系统提供了更自然流畅的解决方案。
AI搜索初创公司Perplexity与Getty Images达成多年授权协议,获得在其AI搜索工具中展示Getty图片的权限。这一合作标志着该公司战略转变,此前Perplexity因内容抓取和抄袭指控备受争议。协议要求在搜索结果中显示图片时必须包含署名和原始来源链接,强调归属和准确性的重要性。
浙江大学研究团队提出Graph2Eval框架,这是首个基于知识图谱的AI代理自动化评测系统。该框架通过知识图谱持续生成新测试任务,解决传统固定数据集评估的局限性。框架支持文档理解和网页交互两类任务,构建了包含1319个任务的测试集。实验验证显示该方法能有效区分不同AI系统能力,为AI代理评估开辟新路径。