Rohini Kasturi,SolarWinds 首席产品官兼执行副总裁
IT 专业人员每天都在不停地分析鉴别各种情况,才能勉强赶上不断增加的工作内容和越来越多需要掌握的不同工具。必须改变现状,否则健康、积极的 IT 们也会变得精疲力尽、体力不支,生产力降低,最终导致业务效率长期低下。
其中一个解决方法就是使用Observability,这是一种越来越被广泛采纳的功能,基于输出内容提供的信息来衡量 IT 系统的内部状态。Observability超越了传统的监测,减少了可能会阻碍 ITOps、DevOps 和安全团队操作的干扰。团队可以通过查看端到端服务交付和所有组件依赖关系,主动检测异常问题,以实现最佳 IT 性能和合规性,从而腾出时间专注于更具战略性的业务计划。
除此之外,Observability最大的优点是它的停机率可以几乎为零,若Observability系统由AI/ML模型支持以处理IT操作 (AIOps) ,系统就可以自动进行快速响应。
进一步全面了解Observability
Observability是传统监控在现代 IT 架构时代的发展方向。我们熟悉的监控会捕获和处理大量基础架构和应用遥测数据及通知,它们可以显示哪些组件处于运行状态,哪些处于关闭状态以及哪些发生了变化。但这种监控只关注特定的网络、云端或基础架构,以及跟踪离散的应用程序和基础架构元素,就好像只盯着布条而不是整块布,“只见树木,不见森林”。
现代系统是多云端和混合云系统,需要跨计算、应用和数据库领域进行连接。这些系统会产生大量遥测数据,传统的监控可能无法提供跨域关联、服务交付洞察、运营依赖性或预测性。简而言之,零碎的监控方式无法满足竞争激烈的数字化转型企业的需求。
Observability通过检查外部输出信息来检测系统的内部状态。它着眼于应用程序和系统,包括终端用户体验和服务器端指标和日志,同时采用由监控收集的信息并在此基础上进行构建。一个完备的Observability系统会使用 AI/ML 来快速识别路线修正,或为 IT 专业人员立即采取行动提供重要的洞察。
Observability的好处
IT 组织可以在复杂、多样、分散的混合和多种云环境中不断提高性能、可用性和数字体验。随着Observability使用范围的扩大,企业可期望在以下三个主要方面有所提升。
减少停机时间:有了Observability,服务是可预测的,停机时间会大大减少,因此可以将工作精力投入在其他方面。此外,团队可以在处理问题和异常检测方面变得更加主动,以实现最佳的 IT 性能、合规性和弹性。组织还可以通过内部云连接或软件即服务 (SaaS) 获得全面、集成且经济高效的功能。
减少猜测性操作:我们曾经采用的零碎的监控方式已经一去不复返了。相反,当端到端Observability内嵌机器学习 (ML) 和 AIOps 时,能利用大量收集到的数据来提供洞察、自动化分析和可操作性智能。团队就能宏观看待整个系统,并快速了解问题所在。
Observability加速问题解决:Observability提供了洞察、自动化分析和可操作性智能来快速解决问题,它还可以处理大量实时和历史指标、日志和跟踪数据。
系统运行得更好,客户和员工都从Observability中有所受益。同时,IT 专业人员只需更少的时间就能赶上进度,留出更多的精力改进流程并学习新任务。
我们无法承受系统停机的代价,因此需要Observability,IT 专业人员也必须获得喘息的机会去学习新技能。Observability可谓是当下必需的技术。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。