本周一,AWS在re:Invent大会有关基础设施的主题演讲中,展示了用于Elastic Compute Cloud的新CPU芯片硬件,新版本的Nitro管理程序,以及支持该芯片的实例。
Amazon表示,全新的Graviton3E芯片是对Graviton系列产品线的升级,与标准Graviton3相比具有显着的性能改进,在基于矢量的工作负载上性能有35%的提升。
AWS效用计算高级副总裁Peter DeSantis(如图)在主题演讲中解释说,该芯片在用于生命科学和金融建模等方面时有更突出的表现,并且针对矢量工作负载和浮点工作负载进行了优化,这些工作负载在高性能计算领域很常见,尤其是涉及金融、天气预报、生命科学、材料科学和化学等大规模数据建模的研究。
基于Arm定制处理器的Graviton系列是由AWS开发的,旨在以更低的成本在EC2中为客户提供卓越的高性能计算。Graviton3在运行某些应用时的性能水平比Graviton2高出80%,甚至显着改善了加密和视频编码。
而此次推出的Graviton3E,将支持一套全新的EC2实例,包括即将推出的HPC7G实例,用于200 GB专用网络带宽的高性能计算工作负载。该实例有多种配置选择,最多64个虚拟CPU和128GiB内存,不过这些实例要到2023年才会上线。
Graviton3E处理器还将可用于C7gn实例,该实例主要针对网络密集型工作负载,例如虚拟网络设备——防火墙、虚拟路由器、负载均衡器和类似服务——数据分析和紧密耦合的计算集群。Graviton3E能够支持200 Gbps的网络带宽,数据包性能提高200%。这些实例今天已经推出了预览版。
DeSantis解释说,这两个新的实例都将采用今天发布的Nitro 5硬件管理程序,这款新的第五代Nitro卡几乎将板载计算能力翻了一番,同时DRAM带宽增加了50%,每秒数据包增加60%,延迟降低30%,每瓦性能提高40%。
DeSantis表示,有了新的Nitro,C7gn实例将以最低延迟和最高吞吐量实现数据包处理性能高达50%的提升。
据他称,之所以能够做到这一点,是因为AWS团队将Nitro定制芯片上的晶体管数量增加了一倍。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。