本周一,AWS在re:Invent大会有关基础设施的主题演讲中,展示了用于Elastic Compute Cloud的新CPU芯片硬件,新版本的Nitro管理程序,以及支持该芯片的实例。
Amazon表示,全新的Graviton3E芯片是对Graviton系列产品线的升级,与标准Graviton3相比具有显着的性能改进,在基于矢量的工作负载上性能有35%的提升。
AWS效用计算高级副总裁Peter DeSantis(如图)在主题演讲中解释说,该芯片在用于生命科学和金融建模等方面时有更突出的表现,并且针对矢量工作负载和浮点工作负载进行了优化,这些工作负载在高性能计算领域很常见,尤其是涉及金融、天气预报、生命科学、材料科学和化学等大规模数据建模的研究。
基于Arm定制处理器的Graviton系列是由AWS开发的,旨在以更低的成本在EC2中为客户提供卓越的高性能计算。Graviton3在运行某些应用时的性能水平比Graviton2高出80%,甚至显着改善了加密和视频编码。
而此次推出的Graviton3E,将支持一套全新的EC2实例,包括即将推出的HPC7G实例,用于200 GB专用网络带宽的高性能计算工作负载。该实例有多种配置选择,最多64个虚拟CPU和128GiB内存,不过这些实例要到2023年才会上线。
Graviton3E处理器还将可用于C7gn实例,该实例主要针对网络密集型工作负载,例如虚拟网络设备——防火墙、虚拟路由器、负载均衡器和类似服务——数据分析和紧密耦合的计算集群。Graviton3E能够支持200 Gbps的网络带宽,数据包性能提高200%。这些实例今天已经推出了预览版。
DeSantis解释说,这两个新的实例都将采用今天发布的Nitro 5硬件管理程序,这款新的第五代Nitro卡几乎将板载计算能力翻了一番,同时DRAM带宽增加了50%,每秒数据包增加60%,延迟降低30%,每瓦性能提高40%。
DeSantis表示,有了新的Nitro,C7gn实例将以最低延迟和最高吞吐量实现数据包处理性能高达50%的提升。
据他称,之所以能够做到这一点,是因为AWS团队将Nitro定制芯片上的晶体管数量增加了一倍。
好文章,需要你的鼓励
数字孪生技术正在改变网络安全防御模式,从被动响应转向主动预测。这种实时学习演进的虚拟副本让安全团队能够在威胁发生前预见攻击。组织可以在数字孪生环境中预演明日的攻击,将防御从事后反应转变为事前排演。通过动态更新的IT生态系统副本,团队可在真实条件下压力测试防御体系,模拟零日漏洞攻击并制定应对策略,从根本上重塑网络安全实践方式。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
Linux内核开发面临动荡时期,Rust语言引入引发摩擦,多名核心开发者相继离职。文章介绍了三个有趣的替代方案:Managarm是基于微内核的操作系统,支持运行Linux软件;Asterinas采用Rust语言开发,使用新型framekernel架构实现内核隔离;Xous同样基于Rust和微内核设计,已有实际硬件产品Precursor发布。这些项目证明了除Linux之外,还有许多令人兴奋的操作系统研发工作正在进行。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。