肺癌是一种可怕的疾病。根据世界卫生组织的数据,肺癌已成全球最常见的致命病因之一,仅2020年就造成近221万例死亡。更重要的是,这种疾病具有进行性——在大多数病患身上,肺癌最初只引发轻微症状、不易引起警觉,但随后迅速演变成危及生命的重症。幸运的是,过去二十年间针对肺癌患者的诊疗方法有了巨大发展。但就目前来看,早期发现仍然是显著降低肺癌死亡率的唯一手段。
最近,麻省理工学院(MIT)与麻省总医院(MGH)宣布开发名为Sybil的深度学习模型,可利用单一CT扫描数据预测肺癌风险。相关研究已经于上击正式发表在《临床肿瘤学杂志》上,其中讨论了“以个性化潜在癌症风险评估工具服务高风险人群”的可能性。研究负责人假设“可以建立一套评估全体积LDCT(低剂量计算机断层扫描)数据的深度学习个体风险预测模型,无需额外的人口统计或临床数据即可提供可靠结论。”
该模型遵循的基本原理非常简单:“LDCT图像中包含的信息,可用于预测未来肺癌风险,且准确率高于现有可识别特征(例如肺结节)。”为此,开发人员试图“开发并验证一种深度学习算法,通过单一LDCT扫描预测未来6年内罹患肺癌的风险,并评估其潜在临床影响。”
总的来说,这项研究目前取得了阶段性成功:Sybil仅依靠单一LDCT数据,就能在一定程度上准确预测患者的肺癌风险。
毫无疑问,这项技术距离临床应用和实际推广还有很长的路要走。研究负责人自己也同意,仍需要大量工作来弄清如何在临床实践中应用这项技术——特别是如何为该技术积累起受众信心,让医生和患者愿意接受系统输出的结果。
但必须承认,该算法的出现极具象征意义,也成为改变诊疗游戏规则的一股潜在力量。
如此强大的诊断方法可谓超出以往的想象。一款工具单凭一次CT扫描就能预测长期疾病趋势,这样的能力有望解决众多现实问题,特别是实施早期治疗和降低患者死亡率。
也许会有人担心这类系统要抢医生们的饭碗,并强调还没有任何AI系统能在判断力和临床诊疗方面取代人类医生。没错,可这类系统并不是要取代医生,而是为医生提供高效且可靠的工作辅助。
像Sybil这样的系统可以作为推荐工具,将可能反映病情的特征标记给医生,再由医生根据自己的临床经验对建议做出取舍。这不仅有望提高接诊效率,也可作为辅助“查验”过程来提高诊断准确性。
当然,后续还有很多工作需要完善。科学家、开发人员和创新者们探索的脚步一刻不能止歇,他们不单要完善具体算法和系统本身,还要解决将这项技术引入实际临床后的种种细微问题。如果能找到一条安全、符合道德且行之有效的推行路线,那么这项技术在改善病患护理方面将迸发出巨大能量,最终颠覆我们所熟知的整个诊疗体系。
好文章,需要你的鼓励
铠侠正在测试最新的UFS v4.1嵌入式闪存芯片,专为智能手机和平板电脑设计,可提供更快的下载速度和更流畅的设备端AI应用性能。该芯片采用218层TLC 3D NAND技术,提供256GB、512GB和1TB容量选择。相比v4.0产品,随机写入性能提升约30%,随机读取性能提升35-45%,同时功耗效率改善15-20%。新标准还增加了主机发起碎片整理、增强异常处理等功能特性。
上海AI实验室团队提出创新的异步拍摄方案,仅用普通相机就能实现高速4D重建。该方法通过错开相机启动时间将有效帧率从25FPS提升至100-200FPS,并结合视频扩散模型修复稀疏视角导致的重建伪影。实验结果显示,新方法在处理快速运动场景时显著优于现有技术,为低成本高质量4D内容创作开辟新路径。
谷歌在伦敦云峰会上发布Firebase Studio更新,新增Gemini命令行界面集成、模型上下文协议支持和"代理模式"。代理模式提供三种AI协作层次:对话式"询问"模式用于头脑风暴,人机协作代理需开发者确认代码变更,以及几乎完全自主的代理模式。尽管谷歌声称已有数百万应用使用该平台,但目前仍需精心设计提示词,非工程师用户还无法直接创建成熟应用。
上海AI实验室联手复旦大学提出了POLAR方法,这是一种革命性的奖励模型训练技术。通过让AI学会识别不同策略间的差异而非死记评分标准,POLAR在多项任务上实现了显著提升,7B参数模型超越72B现有最强基线,为AI对齐问题提供了全新解决思路。