2001年,Yaya Touré第一次踏上欧洲这片土地。他之所以能够前来,靠的是ASEC米莫萨青年队和贝弗伦皇家体育足球俱乐部的引荐。他是从科特迪瓦俱乐部转投贝弗伦的几位球员之一。但为了控制天才少年的物色成本,之前除非是被阿森纳等顶尖俱乐部看中的球员,否则非洲的年轻人们几乎没有机会顺利进军欧洲。
但时间快进到2023年,如今欧洲任何一家俱乐部都可以考察ASEC米莫萨青年队的选手们,而且成本甚至比一张非、欧往返机票还低。
各俱乐部现在不需要飞来飞去现场观看年轻人们的比赛,只要在笔记本电脑上观看赛事视频即可。
让这一切成为现实的,是一套名叫Eyeball的系统。它已经帮助AC米兰、法国里尔以及本菲卡等球队招募到150多名青年球员。Eyeball系统总监David Hicks表示,以往ASEC莫里萨每个月只能接触一次欧洲球队;但在新系统的支持下,现在他们每月会接到30到40通咨询球员情况的电话。球探们也不必亲自前往,他们直接表示“我们观察这名选手已经有几个月了,很喜欢他的状态,希望能了解更多详细情况。”在确定值得跟进之后,对方才会亲自拜访或者邀请该选手到欧洲试训。
Eyeball系统会在球场上方布设一台高分辨率摄像机,借此为比赛生成180度视图,再将素材交给AI软件进行分析。该软件会跟踪每一位球员,为他们的行动和在各项技战术中的表现建立类似于OPTA直播中的单独数据统计。
之后,球探可以使用该系统搜索自己最关注的关键属性,例如年龄、身高或奔跑速度,并观看选手最近的比赛。他们还可以找到该球员由谁负责管理,确定要怎么跟进和协商。在西非,有25家高校都加入到了Eyeball系统当中。因此各俱乐部可以随时查看比赛的完整数据,帮助身在利物浦或曼彻斯特的球探确定值得接触的种子目标。
之后,球探会认真观看所有比赛。如果选手与预期不符,他们也没必要浪费自己的时间和机票成本。
这也意味着,从非洲青年队签下年轻球员用不着再当面接触。贝弗伦及英超各顶级联赛球队都掌握着可观的招人预算,完全可以用同样的钱发挥更大的作用。Hicks称,这是一种“革命性”的人才筛选变化。
Eyeball系统已经在法国等多个国家/地区得到实际应用,记录下各地及国家联赛中的所有青年球队,也允许其他队伍物色那些尚未加入院校球队的青年球员。如今,这套系统已经将专业足球俱乐部和顶级青年联赛全部纳入关注范围。
以冰岛为例,这里的欧洲大陆冠军联赛球队就利用Eyeball找到了一名顶尖青年球员,成功在现场球探之外“捡了漏”。
英国也从Eyeball系统中受益匪浅。由于已经脱欧,英国各球队无法轻松签下欧洲其他国家的青年球员。
Hicks表示,着眼于英国国内,各专业俱乐部跟青年球员间缺乏有效的了解通道。而Eyeball系统能帮助种子选手们更容易获得俱乐部的关注。在经历一系列充满遗憾的错过之后,如今所有青年队比赛的情况都被纳入一套易于搜索的数据库当中,可帮助职业俱乐部决定是否要与竞争对手争夺某位特定人选。
目前Eyeball已经在北爱尔兰上线,而且将很快登陆苏格兰。在脱欧之后,英国各俱乐部明显乐于从这两个地区搜寻有潜力的球员。
除了改善球员遴选效果外,这类新技术还能帮助青年队提高自己的招人标准。例如,在科特迪瓦,Eyeball系统就帮助改善训练和指导课程,让年轻选手们尽快适应这种对个人能力的量化分析。实际上,这类量化分析工具在欧洲顶级俱乐部早已全面落地。
Hicks表示,未来人们可以更轻松地跨不同联赛进行球员能力比较。也许到那个时候,不同国家/地区的俱乐部也能有针对性地发现自己的团队短板,并精准锁定世界另一端某位才华横溢的青年球员。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。