在近日的美国网球公开赛中,IBM作为技术合作伙伴,在本届赛事中首次大规模应用人工智能技术。
IBM加大了AI在网球领域的参与力度,还推出AI抽签分析和基于赛事精彩片段的生成式AI评论,给2023年美国网球公开赛增加了更多人工智能的元素。
IBM体育和娱乐合作伙伴关系技术项目总监Tyler Sidell表示,赛事之前和比赛期间持续采集的270多万个数据点,正不断为该公司提供抽签分析更新、展示球员未来几轮晋级比赛中的相对路径和对抗难度。
IBM的Match Insights Likelihood to Win胜率分析服务截屏。
IBM借鉴了纽约比利·简·金国家网球中心(以及阿瑟·阿什体育场等17大公开赛球场)的现有视频技术,从每场比赛中提取56个不同赛事物理数据点。IBM正在跟进从正手击球速度、到发球百分比在内的各项指标,将现场数据与球员的生物信息相结合,希望在美网公开赛中打造以球迷观感为中心的智能元素。
AI抽签分析与IBM对每场比赛的胜率预测相结合。Sidell指出,利用大量数据支持预测的基本思路,也帮助美国网球协会开拓出“与球迷互动并激发讨论”的全新方式。
通过持续监控赛事信息,IBM能够使用当前数据点不断跟进球员的实时状态。Sidell指出,在温布尔登网球公开赛期间,Watson平台在在卡洛斯·阿尔卡拉斯的全部7场晋级赛中6次成功预测了比赛结果,一路见证其杀入决赛。最终,阿尔卡拉斯凭借奋力一搏,以55%的胜率击败诺瓦克·德约科维奇拿下冠军。
IBM Power Index。
随着比赛的进行,抽签分析结果也随着新见解的出现而有所变化,能够帮助球迷实时了解选手会以哪些路径迈向最终决赛。
在2023年美网公开赛的正赛之前,IBM Power Index已经将美国选手可可·高芙列为女子夺冠大热门,但当时她的真实国际排名仅为全球第六。此外,国际排名第五的翁斯·贾贝乌尔也被IBM Power Index列为二号种子选手。
在男子比赛方面,诺瓦克·德约科维奇的Power Index排名领先于卡洛斯·阿尔卡拉斯。世界排名第六的詹尼克·辛纳则成为三号种子。
至于抽签分析,比赛启动之初IBM就预测德约科维奇获得了通往决赛的最佳路径。至于女子比赛方面,杰西卡·佩古拉应该会相对轻松地进入半决赛。
汤米·保罗在IBM Power Index中的美网公开赛排名预测
IBM与美网公开赛合作已经超过30年,此次还推出针对比赛精彩片段的生成式AI解说,目前已在USTA平台上线。借由WatsonX平台,机器学习技术将从场馆内的摄像机处提取视频源,学习网球运动并尝试讲解精彩片段。
Sidell指出,“我们的目标是丰富社区体验,利用AI将比赛元数据转化为口语表达。”
使用AI系统,IBM能够在比赛结束后的几分钟内将精彩片段拼接起来、为操作赋予可扩展性,确保全部17处比赛场地发来的精彩片段和AI评论均能持续更新。
展望未来,IBM还打算为赛场AI添加多语种支持。
该服务在温布尔登首次亮相,并很快让AI解说成为球迷观看比赛时的默认选项。IBM体育和娱乐合作伙伴副总裁Noah Syken指出,“合作伙伴对新技术的积极接纳令人倍感鼓舞。”
对于2023年美网公开赛,Watson还提前做出关键预测,希望激发球迷们的讨论热情。
好文章,需要你的鼓励
AI项目从试点转向生产阶段时,企业面临意外的云成本激增问题。推理工作负载需要全天候运行以确保服务正常,成本可能一夜间飙升1000%以上。许多公司每月费用从5000美元激增至50000美元。为控制成本,企业开始采用混合架构:将推理工作负载迁移至本地或托管设施,训练任务保留在云端。这种模式可削减60-80%的基础设施支出,在保持性能的同时实现成本可预测性。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
企业在AI模型选择上面临开放源码与封闭专有技术的抉择,这一选择对财务和定制化都有重要影响。开放模型如Meta Llama提供更大控制权和定制选项,而封闭模型如OpenAI GPT-4o提供简化使用和企业级支持。专家建议采用投资组合策略,根据准确性、延迟、成本、安全性等因素选择合适模型,而非单一选择。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。