11月1日,2023杭州云栖大会上,阿里云瑶池数据库宣布已全面实现Serverless化,并接入通义等大模型能力,大幅提升数据库一站式及智能化水平。同时,PolarDB Always On系列推出3大重磅升级,首个数据智能助手DMS Copilot也惊艳亮相。
“在Serverless与AI的驱动下,云原生数据库加速向一站式智能数据平台发展演进。”阿里云数据库产品事业部负责人李飞飞在会上表示。
李飞飞指出,数据平台应该像“搭积木”一样便捷好用,而Serverless化是实现此目标的核心路径。
目前,阿里云瑶池数据库几大核心产品均已推出Serverless形态,并进一步实现了“弹得更快、更稳、更广、更细”的全面升级,较传统架构可降低60%成本。
为一站式解决开发者的全部需求,阿里云数据库进行了一体化的大幅升级,包括HTAP一体化、DB+Cache一体化、DB+存储一体化等三大能力的全面提升,并在OLTP、OLAP、NoSQL等多业务场景融合落地,产品易用性大大提高,进一步简化开发、管理和运维成本。
本次云栖大会上,阿里云还公布3大技术升级:PolarDB实现Multi-Master三层解耦架构,内存使用率提升50%;Multi-Master轮动升级,不可用时间减少50%;高压缩比数据存储,最高可节省80%存储成本。
“大模型技术的突破,让AI更好地驱动底层技术迭代升级。”李飞飞表示,底层基础设施中的数据库,将全面拥抱AI技术变革。
目前,阿里云瑶池数据库全面提升了向量检索能力,在PolarDB、RDS、AnalyticDB、Lindorm、Tair等产品中集成向量功能,实现结构化数据、半结构化数据、多模数据、向量数据的一体化处理。阿里云新发布的8大行业模型及“百炼”平台,就采用AnalyticDB作为内置向量检索引擎,性能较开源增强了2至5倍,加速AIGC应用落地。
数据智能助手DMS Copilot也在会上惊艳亮相。据悉,DMS Copilot可支持30+种数据库类型,提供NL2SQL、SQL注释生成、SQL纠错、SQL优化等功能,大幅降低SQL编写门槛,提升开发效率。在耶鲁大学推出的Spider数据集评测中,DMS Copilot的成功率和准确率达到99.5%和78%,比开源模型的正确率高出4%。
此外,阿里云还宣布与SelectDB、MongoDB和Clickhouse分别达成战略合作,推进技术合作和生态协同,构建合作共赢的生态体系。
目前,阿里云瑶池数据库已在千行百业的核心业务中落地应用,服务于自然人税收管理系统、全国60%的省级医保信息平台、广东移动、友邦保险、南方基金、上海市新能源汽车数据平台、掌阅科技、莉莉丝游戏、识货APP等金融、政务、电信、互联网等多领域的客户。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。