自从计算机科学的黎明时期以来,软件质量的发展经历了一系列的转折和里程碑。从最初的功能性需求,到现在的全面考虑功能性、性能效率、兼容性、易用性、可靠性、信息安全性、维护性和可移植性等等,软件质量的定义和重要性都有了显著的提高。
在1960年代和1970年代,软件开发主要是为了满足功能需求,而对软件的质量并没有过多的考虑。随着计算机系统变得越来越复杂,人们开始意识到软件质量的重要性。在这个阶段,人们主要依赖手动测试,但这种测试方法成本高昂,效率低下。
进入1980年代和1990年代,随着技术的进步,软件测试的方法也有了显著的改进。人们开始使用测试工具,这些工具可以在短时间内检测出大量的错误。同时,人们也开始关注软件开发过程中的质量管理,例如引入了软件开发生命周期模型。

21世纪初,软件质量的重要性得到了全球的认可。全球的标准化组织开始制定软件质量的标准和最佳实践。如今,软件质量已经成为企业竞争力的关键因素之一。随着DevOps和敏捷开发的流行,软件质量不再仅仅是测试阶段的任务,而是贯穿于整个软件开发生命周期。它为开发和运维团队提供了一种全新的方式来管理和提高软件质量。而随着人工智能和机器学习技术的发展,软件测试的方法也在不断进步。以Testin云测为代表的头部企业将人工智能技术引入到测试过程中来,智能测试时代正式开启。
据了解,目前Testin云测已经开始探索使用大模型辅助生成代码,预估软件开发效率将提升20%至30%。同时,Testin云测也正在测试评估国内、国外的开源大模型能力,尝试用大模型助力测试用例分析、测试需求分析、测试报告解读等软件测试环节,从测试的结果来看,也能达到20%至30%的效率提升。
在2023世界人工智能大会上,用大模型测试大模型的技术趋势已经开始涌现。而大模型的引入,使得我们可以通过机器自动化进行大部分的测试工作,大大提高了我们的工作效率。此外,大模型还可以帮助我们更深入、更全面地理解软件的功能和性能,从而更准确地找出可能的问题和错误。
随着软件的市场的扩大,更多的国内企业也开始认识到软件测试的重要性,软件测试行业正在向智能测试、测试服务化等方向发展,而对于大模型在软件行业的应用,更多的业内专家表示这必将是软件测试行业的未来和新的增长点。
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。