Google Cloud近日详细介绍了Axion,一款基于Arm核心设计的、内部开发的CPU。
Google Cloud首席执行官Thomas Kurian在美国拉斯维加斯举行的Cloud Next大会发表主题演讲时推出了这款CPU。在这次活动上,Google Cloud还宣布最新的AI加速器TPU v5p全面上市,这款芯片在处理浮点数(AI模型常用的数据单元)时性能是前身的2倍。
Google Cloud机器学习、系统和云AI副总裁Amin Vahdat在一篇博客文章中表示:“阿姆达尔定律表明,随着加速器的不断改进,通用计算将主导成本并限制我们的基础设施能力,除非我们做出相应的投资来跟上步伐。”
基于Arm的架构
Google Cloud尚未分享Axion架构的详细信息,例如它包含多少个核心以及板载缓存的数量。Google Cloud表示,有关该芯片设计的更多信息将于今年晚些时候公布,不过确实透露称,Axion是基于Arm Neoverse V2 CPU核心设计的。
Neoverse V2是在2022年推出的,针对云数据中心和其他高性能计算环境进行了优化,速度是Arm上一代核心设计的2倍。据该芯片制造商称,这种加速的一部分原因是进行了优化,使得Neoverse V2能够更快地处理整数——许多类型计算中使用的常见数据单位。
基于Neoverse V2的处理器可以配备多达256个核心和512MB缓存,还可以使用Arm最新的指令集架构ARMv9。芯片的指令集架构包括用于表达计算的机器语言和某些相关技术。
Neoverse V2支持的ARMv9功能之一,是一种称为Memory Tagging Extension的网络安全机制。据Arm称,它把连接到芯片的内存分成16位段,并向每个段添加四个附加位,充当一种锁。只有有权访问内存段的应用才能通过锁定,从而降低了黑客攻击的风险。
Neoverse还支持ARMv9的PDP(性能定义功率)功能,此功能可以通过降低CPU的最大性能来提高CPU的能效。
定制云芯片
Google Cloud在自己的数据中心内出了部署Axion处理器之外,还会部署一套名为Titanium的基础设施优化系统,它将卸载Axion处理器的一些任务,为客户工作负载留下更多计算能力。据Google Cloud称,Titanium是由三套内部开发的芯片组成的。
Titanium系统使用了名为Titan的微控制器或简单处理器作为Axion的信任根。信任根是一个硬件模块,可以防止黑客在服务器启动时将恶意代码引入服务器。据 Google Cloud称,Titan还有助于保护数据中心的网络流量。
Axion将把处理用户网络流量所涉及的一些计算转给名为TOP的定制芯片,该芯片也是Titanium系统的一部分。与此同时,第三个名为Titanium适配器的定制处理器也可以帮助运行为Google Cloud实例提供支持的虚拟化软件。Hyperdisk是Google Cloud的块存储服务,承担了一些原本由Axion执行的计算任务,以进一步提高性能。
“Axion处理器为Web和应用服务器、容器化微服务、开源数据库、内存缓存、数据分析引擎、媒体处理、基于CPU的AI训练和推理等通用工作负载带来了巨大的性能飞跃,”Vahdat详细说道。
Google Cloud表示,与竞争对手最快的Arm通用实例相比,基于Axion的实例的性能提高了30%。此外Google Cloud还承诺,与基于英特尔芯片的实例相比,处理速度提高了50%,能效提高60%。Google Cloud计划在今年晚些时候向客户提供Axion。
Google Cloud还将使用该芯片为多个内部工作负载提供支持。Google已经开始重组其数据中心,在基于Arm的硬件上运行某些Google Cloud服务、YouTube广告系统和Google Earth Engine卫星图像分析平台,并计划在不久的将来在Axion支持的服务器上部署其中一些工作负载。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。