近日,西门子和微软宣布与W3C(W3C Consortium,万维网联盟)合作,致力于将DTDL(数字孪生定义语言)与国际标准组织W3C的Thing Description(事物描述)标准融合。
这些组织表示,通过统一这两种语言,用户将获得更加一致的数字孪生建模体验。将这两种语言标准化的举措有现实的原因,终端用户经常混合部署供应商的技术,可能会遇到锁定以及集成工作量巨大的问题。
微软的Digital Twin Definition Language(数字孪生定义语言)可利用Azure服务对物理世界进行建模,而W3C Thing Description标准则提供了一种可互操作的设备接口表示法,并将其纳入标准行业之中。在融合的初始阶段,微软表示发现这两种语言在概念上有许多相似之处。
根据W3C的定义,Thing Description描述了事物的元数据和接口,“事物”(Thing)是物理或虚拟实体的抽象概念,它提供了与物联网的交互并参与其中。Thing Descriptions基于小型词汇表提供了一套的交互方式,使整合不同设备和允许不同应用互操作成为可能。
西门子和微软表示,数字孪生语言的标准化对于互操作性至关重要,可确保不同数字孪生系统和平台之间的无缝通信和集成。
微软Azure边缘和平台团队标准、联盟和工业物联网首席架构师Erich Barnstedt表示:“自从我们发明了数字孪生定义语言并将其规范和参考实现开源以来,我们就计划通过像W3C这样的联盟将其标准化”,“因此,与西门子密切合作,将DTDL与 W3C Thing Description 合并,是我们在行业内实现数字孪生民主化的旅程中自然而然的下一步。”
西门子正在推动 W3C Thing Description在其未来的楼宇管理、配电和智能电网产品中的应用。
西门子智能基础设施首席技术官Thomas Kiessling表示:“我们认为,像DTDL和W3C Thing Description这样两种非常相似的数字孪生语言的融合是一项重要举措,将使客户能够以一种与特定物联网平台无关的方式描述物理世界。”“这一战略联盟彰显了我们促进合作、拥抱开放的承诺。”
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。