微软的研究人员近日发布了实验性人工智能模型SpreadsheetLLM的详细信息,这个模型是与Excel以及Google Sheets等电子表格配合使用的。
微软在7月12日发表在Arxiv.org上的一篇研究论文中讨论了该模型,模型旨在解决将AI应用于电子表格的挑战,电子表格在商业世界中被广泛使用,但事实证明电子表格很难被大型语言模型掌握。
据微软研究人员称,SpreadsheetLLM采用了一种新颖的方法将电子表格内容编码为大型语言模型更容易使用的新格式,因此为这些模型“推理电子表格内容”铺平了道路。
研究人员强调了对这个特定AI领域迫切的改进需求。电子表格用于各种任务,从简单的数据输入和分析到复杂的财务建模和决策,但现有的大型语言模型很难理解和推理电子表格的内容,问题在于电子表格中数据具有高度结构化的性质,此外还有复杂的公式和引用。
据报道,SpreadsheetLLM通过以更适合大型语言模型的方式对电子表格数据进行编码来解决这个问题,这样就可以更好地理解电子表格内容。
为此,研究人员制定了一种名为SheetCompressor的新型编码机制,它保留了数据的结构和关系,同时使大型语言模型可以访问它。SheetCompressor特别将数据压缩高达96%,这样大型语言模型就可以在其token限制内处理大型数据集。
研究人员还强调了另一个称为“结构锚提取”的功能,可以识别定义表结构的关键行和列。同时,“倒排索引翻译”是一种高效编码单元格内容和地址以最小化冗余的方法,而“数据格式感知聚合”则有助于对以相似格式的单元格进行分组,从而进一步最小化token的使用。
研究人员在实验中发现,SpreadsheetLLM在电子表格的表格检测测试中取得了一些令人印象深刻的结果,比现有方法改进12.3%。此外,它在电子表格问答任务上也取得了突出的成绩。
SpreadsheetLLM被应用于一系列知名的大型语言模型,包括GPT-3.5、GPT-4和Llama 2,测试表明,它显著增强了这些模型在电子表格理解任务方面的能力。例如,GPT-4的表格检测得分为78.9%。
研究人员表示,SpreadsheetLLM仍是一种实验性的模型,在更复杂的电子表格格式方面存在一些局限性,但他们也相信它具有很大的潜力,例如,他们说该模型可以应用于诸如自动化常规数据分析等任务,以根据电子表格内容生成见解和建议。通过帮助大型语言模型理解电子表格、回答有关电子表格的问题,甚至根据自然语言提示创建新的电子表格,它为AI辅助数据分析和决策的新可能性打开了一扇大门。
SpreadsheetLLM 还可以帮助人类工作者更容易使用电子表格,因为很多人难以掌握Excel等工具更复杂的功能。使用电子表格的挑战之一,就是需要学习复杂的公式来操作其中的数据,但SpreadsheetLLM可以帮助用户使用自然语言命令来操作这些数据。
最后,研究人员表示,SpreadsheetLLM可以帮助对一些与电子表格相关的、更繁琐的任务实施自动化,例如数据清理、格式化和聚合。
Constellation Research分析师Holger Mueller表示,这项研究意义重大,因为有许多业务都依赖于Excel电子表格。“微软必须走在前沿,通过AI让Excel电子表格更易于访问。口头访问电子表格具有巨大的价值,无论是对于创建还是分析Excel文件来说。”
Mueller表示,AI还有可能使电子表格的使用变得普及,让任何人都能轻松地使用电子表格。他预测说:“如果微软能够正确地做到这一点,那么不仅会确保Excel的未来,还会改变我们所知的工作方式的未来。”
目前,SpreadsheetLLM只是一个研究项目,微软还没有表示是否有计划将其转化为实际产品。但不难想象,这项研究可能会打造出某种“Copilot for Excel”。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。