微软的研究人员近日发布了实验性人工智能模型SpreadsheetLLM的详细信息,这个模型是与Excel以及Google Sheets等电子表格配合使用的。
微软在7月12日发表在Arxiv.org上的一篇研究论文中讨论了该模型,模型旨在解决将AI应用于电子表格的挑战,电子表格在商业世界中被广泛使用,但事实证明电子表格很难被大型语言模型掌握。
据微软研究人员称,SpreadsheetLLM采用了一种新颖的方法将电子表格内容编码为大型语言模型更容易使用的新格式,因此为这些模型“推理电子表格内容”铺平了道路。
研究人员强调了对这个特定AI领域迫切的改进需求。电子表格用于各种任务,从简单的数据输入和分析到复杂的财务建模和决策,但现有的大型语言模型很难理解和推理电子表格的内容,问题在于电子表格中数据具有高度结构化的性质,此外还有复杂的公式和引用。
据报道,SpreadsheetLLM通过以更适合大型语言模型的方式对电子表格数据进行编码来解决这个问题,这样就可以更好地理解电子表格内容。
为此,研究人员制定了一种名为SheetCompressor的新型编码机制,它保留了数据的结构和关系,同时使大型语言模型可以访问它。SheetCompressor特别将数据压缩高达96%,这样大型语言模型就可以在其token限制内处理大型数据集。
研究人员还强调了另一个称为“结构锚提取”的功能,可以识别定义表结构的关键行和列。同时,“倒排索引翻译”是一种高效编码单元格内容和地址以最小化冗余的方法,而“数据格式感知聚合”则有助于对以相似格式的单元格进行分组,从而进一步最小化token的使用。
研究人员在实验中发现,SpreadsheetLLM在电子表格的表格检测测试中取得了一些令人印象深刻的结果,比现有方法改进12.3%。此外,它在电子表格问答任务上也取得了突出的成绩。
SpreadsheetLLM被应用于一系列知名的大型语言模型,包括GPT-3.5、GPT-4和Llama 2,测试表明,它显著增强了这些模型在电子表格理解任务方面的能力。例如,GPT-4的表格检测得分为78.9%。
研究人员表示,SpreadsheetLLM仍是一种实验性的模型,在更复杂的电子表格格式方面存在一些局限性,但他们也相信它具有很大的潜力,例如,他们说该模型可以应用于诸如自动化常规数据分析等任务,以根据电子表格内容生成见解和建议。通过帮助大型语言模型理解电子表格、回答有关电子表格的问题,甚至根据自然语言提示创建新的电子表格,它为AI辅助数据分析和决策的新可能性打开了一扇大门。
SpreadsheetLLM 还可以帮助人类工作者更容易使用电子表格,因为很多人难以掌握Excel等工具更复杂的功能。使用电子表格的挑战之一,就是需要学习复杂的公式来操作其中的数据,但SpreadsheetLLM可以帮助用户使用自然语言命令来操作这些数据。
最后,研究人员表示,SpreadsheetLLM可以帮助对一些与电子表格相关的、更繁琐的任务实施自动化,例如数据清理、格式化和聚合。
Constellation Research分析师Holger Mueller表示,这项研究意义重大,因为有许多业务都依赖于Excel电子表格。“微软必须走在前沿,通过AI让Excel电子表格更易于访问。口头访问电子表格具有巨大的价值,无论是对于创建还是分析Excel文件来说。”
Mueller表示,AI还有可能使电子表格的使用变得普及,让任何人都能轻松地使用电子表格。他预测说:“如果微软能够正确地做到这一点,那么不仅会确保Excel的未来,还会改变我们所知的工作方式的未来。”
目前,SpreadsheetLLM只是一个研究项目,微软还没有表示是否有计划将其转化为实际产品。但不难想象,这项研究可能会打造出某种“Copilot for Excel”。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。