沃尔玛公司的营销策略一直专注于实惠的价格和无缝的客户服务,现在则延伸到自己的机器学习平台Element上。
沃尔玛全球科技云和数据平台高级副总裁Anil Madan(如图)表示,集中式云原生服务使沃尔玛能够利用大型语言模型的强大功能来开展所有线上和线下业务。
“我们从数据生命周期管理成千上万个数据源。数据生命周期是指数据以原始格式移动,进入中央湖。它经过一定的转换和质量处理以创建数据目录,这个数据目录对我们分析和机器学习的各个方面都有很大帮助,”他强调Element平台如何改变了沃尔玛的云运营状况。“我们企业数据湖的关键要素就是我们如何在尊重安全、数据主权等基本要素的情况下以集中的形式构建它。”
Madan谈到了Element平台如何为沃尔玛的企业及其最佳战略提供支持:
Element的三重模型
沃尔玛使用混合云环境,Element平台为私有云和公有云中的分析处理、机器学习和数据管理提供支持,以打造Madan所描述的无缝的“全渠道”体验。
他说:“我们拥有的是混合多云策略,这基本上帮助我们无缝地集成和运行了与云无关的工作负载,包括应用工作负载和机器学习工作负载。当我们谈到三重[模型]的时候,我们有两个公有云提供商和一个私有云以对称方式出现,这样我们基本上就可以大规模地运行混合多云工作负载。”
Element“三重模型”这个大伞下,是沃尔玛开源的OneOps Cloud Management Platform(也就是Walmart Cloud Native Platform),也就是说,沃尔玛可以在私有云和公有云之间移动应用,以及允许工程师移动数据的数据抽象层。然后,这些云提供商在三个区域进行复制:西部、中部和东部。
[Element的三重模型]基本上提供的是我们按需的基础设施,我们可以在其中采用不同的计算类型,无论是CPU、GPU还是TPU,并在不同的云提供商之间可移植地运行它们。我们还拥有一个非常成熟的MLOps部署框架,基本上可以帮助我们在几分钟内而不是几天内部署这些工作负载。现在,这些因素结合在一起,有助于支持我们所有的生成式AI工作负载,因为现在我们可以互操作不同类型的大型语言模型……在这种三重架构中无缝运行这些模型。”
部署在三重架构中的抽象层,还让工程师更容易训练和扩展AI模型。因此,沃尔玛的AI开发正在快速推进,而无需锁定任何一家供应商。
Madan说:“OneOps有云管理抽象层,WCNP有工作负载管理层,我们为应用开发者提供SDK的时候还有数据管理层。这些抽象层的组合基本上帮助我们提供那些与供应商无关的最佳技术,从而帮助他们在需要时快速交换,同时仍然让他们能够在这种混合多云中相当快速地大规模部署这些技术。”
根据理念定制平台
沃尔玛在开发Element的时候避免只选择一家供应商,目标是保持“每天低成本”的商业模式。开源软件还有助于沃尔玛节省运营成本,帮助客户节省开支。
Madan表示:“Element带来的回报是全方位的。开发者的生产力是一个巨大的回报。对应用工程师和数据科学家来说,最大的好处是,他们可以快速大规模地训练他们的工作负载。他们不需要去寻找数据来创建这些,因为现在所有这些都已经在通用的企业数据湖中为他们解决了。他们只需要选择他们的算法或者他们想要的东西,然后基本上就可以开始运营了。”
据Madan称,Element促进AI的快速发展并不以牺牲安全为代价。沃尔玛已经实施了自己的治理层来检测AI幻觉并降低安全风险,以保持自己作为一家值得信赖的零售商的地位。
Madan说:“沃尔玛的一切都围绕着我们的使命和宗旨……我们是一家以人为本、科技驱动的全渠道零售商,我们的全部目的和目标就是省钱,这样我们才能帮助我们的客户过上更好的生活。安全是我们所做一切的关键基础,所以我们要确保数据的使用和消费方式,以及谁有授权,这些都成为我们指导原则中的关键部分。”
好文章,需要你的鼓励
这项研究针对现代文档检索系统中的关键缺陷:独立处理文档片段导致丢失上下文信息。研究团队开发了ConTEB基准测试来评估模型利用文档级上下文的能力,并提出了InSeNT方法,结合后期分块和创新的对比学习策略。实验表明,上下文感知嵌入显著提升检索性能,尤其在处理非自包含文本片段时,同时保持计算效率,对分块策略更具鲁棒性,并且在语料库规模扩大时表现更佳。这一研究为更智能的文档检索系统铺平了道路。
这项由布朗大学和Cohere实验室研究者联合进行的研究全面分析了大型语言模型(LLM)安全研究中的语言不平等现象。通过系统回顾近300篇2020-2024年间的安全相关论文,研究发现LLM安全研究严重偏向英语,即使中文这样的高资源语言也仅获得英语十分之一的研究关注,且这一差距正在扩大。研究还揭示非英语语言很少作为独立研究对象,且英语安全研究常忽略语言覆盖文档化。为解决这一问题,研究者提出了三个未来方向:开发文化敏感的评估基准、创建多语言安全训练数据,以及深入理解跨语言安全泛化挑战。
这项研究提出了ChARM,一种创新的角色扮演AI奖励建模框架,通过行为自适应边界和自我进化策略大幅提升AI角色的真实性和一致性。研究团队创建了包含1,108个角色的RoleplayPref数据集,实验表明ChARM比传统模型提高了13%的偏好排名准确率,应用于DPO技术后在多项基准测试中达到了领先水平。这一突破将为娱乐、教育和心理健康支持等领域带来更加自然、个性化的AI互动体验。
这篇研究重新审视了循环神经网络中的双线性状态转换机制,挑战了传统观点。高通AI研究团队证明,隐藏单元不仅是被动记忆存储,更是网络计算的积极参与者。研究建立了一个从实数对角线到完全双线性的模型层级,对应不同复杂度的状态跟踪任务。实验表明,双线性RNN能有效学习各种状态跟踪任务,甚至只需极少量训练数据。研究还发现,纯乘法交互比加法交互更有利于状态跟踪,为循环网络设计提供了新视角。