NASA 的人力分析团队因成本问题,将原使用近十年的 Neo4j 图数据库换成 Memgraph。
团队高级数据科学家 David Meza 在最近的网络研讨会上表示,尽管他们使用 Neo4j 已经近十年,但成本问题日益突出。
Meza 曾在接受 The Register 采访时谈到,使用 Neo4j 图数据库系统的好处在于能整合 NASA 各企业应用中的数据,从而理解知识、技能、能力、任务与技术 ( KSATTs ) 与职业、角色及培训之间的关系。
但在最近关于 Memgraph 的网络研讨会上,他解释了转向这种基于内存的图数据库的原因。
他说:“使用 Neo4j 最大的问题是成本太高,我当前的环境承受不起这个费用。”
上周,特朗普政府提议将 NASA 的年度预算由 248 亿美元削减 24%,降至 188 亿美元,以削减政府开支。
Memgraph 同样使用与 Neo4j 相同的 Cypher 查询语言。不过,它使用 C++ 编写,并且与 Python 的集成效果优于采用 Java 构建应用的 Neo4j。
他表示:“它有很多优点。我们可以使用相同的工具而无需重新学习大量内容,因为我们在 Neo4j 上已经积累了大量经验。而后,Memgraph 展示了其成本优势,这促使我做出了这个决定。这不仅是出于成本考量,更因为转换过程十分便捷。”
NASA 正将 Memgraph 整合进其人力资本智能查询系统,以便为员工更快地检索相关信息。Meza 在一份声明中表示:“它基于图的数据结构使我们能够实时跟踪更新,确保各项政策文件和数据源之间的精确关联。通过将 Memgraph 融入到我们的检索增强生成过程中,我们提升了系统响应速度,并能更好地处理 NASA 的知识提取任务,同时无需进行大量手动数据协调。”
在接受 The Register 采访时,Memgraph 首席执行官 Dominik Tomicevic 表示,Neo4j 依赖于基于磁盘的复杂 B-tree 结构,并辅以内存缓存。“因此,为了运行图算法,需要在图中进行大量的随机跳转。”
由于磁盘设计用于顺序读取而非随机读取,所以其解决方案是复制数据,从只读格式中运行分析工作负载,并在需要时将结果写回原始数据。
Tomicevic 说道:“虽然在使用 Neo4j 时可以完成许多任务,尤其是在处理批量工作负载时,但如果需要实时作出决策,那么重建内存索引、重复所有数据、运行算法再将数据写回原始图形的成本将会大大增加。”
他还指出,在 Memgraph 中,数据结构首先为数据科学工作负载而构建。借助 snapshots ( snapshots ),这一内存系统不仅支持事务性工作负载,还能满足实时分析需求。
好文章,需要你的鼓励
ServiceNow宣布将以超过10亿美元收购身份安全平台Veza,这是该公司2025年一系列AI和数据重点收购的最新举措。此次收购正值企业加速部署AI代理之际,而如何管理这些非人类身份的访问权限和输出已成为普遍难题。该交易将为ServiceNow的AI控制塔提供关键的身份治理能力,帮助企业建立统一的控制平面来定义上下文相关的权限、监控代理行为并大规模执行最小权限访问策略。
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
在生成式AI热潮中,只有英伟达和台积电真正赚到钱,其他AI产业链公司要么亏损要么利润被稀释。博通虽然在数据中心网络领域有不错的利润率,但为了不被AI浪潮抛弃,也选择进入AI业务。博通拥有730亿美元的AI积压订单,但被迫成为AI系统集成商,进一步稀释利润。第四季度博通收入180亿美元,同比增长28.2%,AI芯片收入达65亿美元。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。