NASA 的人力分析团队因成本问题,将原使用近十年的 Neo4j 图数据库换成 Memgraph。
团队高级数据科学家 David Meza 在最近的网络研讨会上表示,尽管他们使用 Neo4j 已经近十年,但成本问题日益突出。
Meza 曾在接受 The Register 采访时谈到,使用 Neo4j 图数据库系统的好处在于能整合 NASA 各企业应用中的数据,从而理解知识、技能、能力、任务与技术 ( KSATTs ) 与职业、角色及培训之间的关系。
但在最近关于 Memgraph 的网络研讨会上,他解释了转向这种基于内存的图数据库的原因。
他说:“使用 Neo4j 最大的问题是成本太高,我当前的环境承受不起这个费用。”
上周,特朗普政府提议将 NASA 的年度预算由 248 亿美元削减 24%,降至 188 亿美元,以削减政府开支。
Memgraph 同样使用与 Neo4j 相同的 Cypher 查询语言。不过,它使用 C++ 编写,并且与 Python 的集成效果优于采用 Java 构建应用的 Neo4j。
他表示:“它有很多优点。我们可以使用相同的工具而无需重新学习大量内容,因为我们在 Neo4j 上已经积累了大量经验。而后,Memgraph 展示了其成本优势,这促使我做出了这个决定。这不仅是出于成本考量,更因为转换过程十分便捷。”
NASA 正将 Memgraph 整合进其人力资本智能查询系统,以便为员工更快地检索相关信息。Meza 在一份声明中表示:“它基于图的数据结构使我们能够实时跟踪更新,确保各项政策文件和数据源之间的精确关联。通过将 Memgraph 融入到我们的检索增强生成过程中,我们提升了系统响应速度,并能更好地处理 NASA 的知识提取任务,同时无需进行大量手动数据协调。”
在接受 The Register 采访时,Memgraph 首席执行官 Dominik Tomicevic 表示,Neo4j 依赖于基于磁盘的复杂 B-tree 结构,并辅以内存缓存。“因此,为了运行图算法,需要在图中进行大量的随机跳转。”
由于磁盘设计用于顺序读取而非随机读取,所以其解决方案是复制数据,从只读格式中运行分析工作负载,并在需要时将结果写回原始数据。
Tomicevic 说道:“虽然在使用 Neo4j 时可以完成许多任务,尤其是在处理批量工作负载时,但如果需要实时作出决策,那么重建内存索引、重复所有数据、运行算法再将数据写回原始图形的成本将会大大增加。”
他还指出,在 Memgraph 中,数据结构首先为数据科学工作负载而构建。借助 snapshots ( snapshots ),这一内存系统不仅支持事务性工作负载,还能满足实时分析需求。
好文章,需要你的鼓励
VSCO今日更新VSCO Capture应用,新增视频拍摄功能。用户现可在拍摄照片和视频时应用并调整VSCO的50多种滤镜预设,包括经典胶片到现代创作风格。新版本还推出胶片颗粒滤镜,可动态控制纹理强度、大小和色彩。用户能将颗粒滤镜叠加到Film X滤镜上,结合柯达、富士和爱克发胶片风格,保存个性化胶片配方。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
Instagram负责人Adam Mosseri表示,AI生成内容已经占据社交媒体主导地位,预计将超越非AI内容。他认为识别AI内容的技术效果不佳,建议转而为真实媒体建立指纹识别系统,由相机制造商在拍摄时进行加密签名。Mosseri还指出,创作者应优先发布"不完美"的原始图像来证明真实性,因为精美方形图片的时代已经结束。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。