NASA 的人力分析团队因成本问题,将原使用近十年的 Neo4j 图数据库换成 Memgraph。
团队高级数据科学家 David Meza 在最近的网络研讨会上表示,尽管他们使用 Neo4j 已经近十年,但成本问题日益突出。
Meza 曾在接受 The Register 采访时谈到,使用 Neo4j 图数据库系统的好处在于能整合 NASA 各企业应用中的数据,从而理解知识、技能、能力、任务与技术 ( KSATTs ) 与职业、角色及培训之间的关系。
但在最近关于 Memgraph 的网络研讨会上,他解释了转向这种基于内存的图数据库的原因。
他说:“使用 Neo4j 最大的问题是成本太高,我当前的环境承受不起这个费用。”
上周,特朗普政府提议将 NASA 的年度预算由 248 亿美元削减 24%,降至 188 亿美元,以削减政府开支。
Memgraph 同样使用与 Neo4j 相同的 Cypher 查询语言。不过,它使用 C++ 编写,并且与 Python 的集成效果优于采用 Java 构建应用的 Neo4j。
他表示:“它有很多优点。我们可以使用相同的工具而无需重新学习大量内容,因为我们在 Neo4j 上已经积累了大量经验。而后,Memgraph 展示了其成本优势,这促使我做出了这个决定。这不仅是出于成本考量,更因为转换过程十分便捷。”
NASA 正将 Memgraph 整合进其人力资本智能查询系统,以便为员工更快地检索相关信息。Meza 在一份声明中表示:“它基于图的数据结构使我们能够实时跟踪更新,确保各项政策文件和数据源之间的精确关联。通过将 Memgraph 融入到我们的检索增强生成过程中,我们提升了系统响应速度,并能更好地处理 NASA 的知识提取任务,同时无需进行大量手动数据协调。”
在接受 The Register 采访时,Memgraph 首席执行官 Dominik Tomicevic 表示,Neo4j 依赖于基于磁盘的复杂 B-tree 结构,并辅以内存缓存。“因此,为了运行图算法,需要在图中进行大量的随机跳转。”
由于磁盘设计用于顺序读取而非随机读取,所以其解决方案是复制数据,从只读格式中运行分析工作负载,并在需要时将结果写回原始数据。
Tomicevic 说道:“虽然在使用 Neo4j 时可以完成许多任务,尤其是在处理批量工作负载时,但如果需要实时作出决策,那么重建内存索引、重复所有数据、运行算法再将数据写回原始图形的成本将会大大增加。”
他还指出,在 Memgraph 中,数据结构首先为数据科学工作负载而构建。借助 snapshots ( snapshots ),这一内存系统不仅支持事务性工作负载,还能满足实时分析需求。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。