科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道基础软件Java移动设备D图形:M3G快速模式(组图)

Java移动设备D图形:M3G快速模式(组图)

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

  本文是此系列两部分中的第 1 部分,介绍了 Mobile 3D Graphics API (JSR 184) 的有关内容。作者将带领您进入 Java 移动设备的 3D 编程世界,并展示了处理光线、摄像机和材质的方法。

作者:builder.com.cn 2007年8月24日

关键字: M3G快速模式 D图形 移动设备 java

  • 评论
  • 分享微博
  • 分享邮件
  本文是此系列两部分中的第 1 部分,介绍了 Mobile 3D Graphics API (JSR 184) 的有关内容。作者将带领您进入 Java 移动设备的 3D 编程世界,并展示了处理光线、摄像机和材质的方法。
  
  在移动设备上玩游戏是一项有趣的消遣。迄今为止,硬件性能已足以满足经典游戏概念的需求,这些游戏确实令人着迷,但图像非常简单。今天,人们开发出大量二维平面动作游戏,其图像更为丰富,弥补了俄罗斯方块和吃豆游戏的单调感。下一步就是迈进 3D 图像的世界。Sony PlayStation Portable 将移动设备能够实现的图像能力展现在世人面前。虽然普通的移动电话在技术上远不及这种特制的游戏机,但由此可以看出整个市场的发展方向。Mobile 3D Graphics API(简称为 M3G)是在 JSR 184(Java 规范请求,Java Specification Request)中定义的,JSR 184 是一项工业成就,用于为支持 Java 程序设计的移动设备提供标准 3D API。
  
  M3G API 大致可分为两部分:快速模式和保留模式。在快速模式下,您渲染的是单独的 3D 对象;而在保留模式下,您需要定义并显示整个 3D 对象世界,包括其外观信息在内。可以将快速模式视为低级的 3D 功能实现方式,保留模式显示 3D 图像的方式更为抽象,令人感觉也更要舒服一些。本文将对快速模式 API 进行介绍。而本系列的第 2 部分将介绍保留模式的使用方法。
  
  M3G 以外的技术
  
  M3G 不是孤独的。HI Corporation 开发的 Mascot Capsule API 在日本国内非常流行,日本三大运营商均以不同形式选用了这项技术,在其他国家也广受欢迎。例如,Sony Ericsson 为手机增加了 M3G 和 HI Corporation 的特定 API。根据应用程序开发人员在 Sony Ericsson 网站上发布的报告,Mascot Capsule 是一种稳定且快速的 3D环境。
  
  JSR 239 也就是 Java Bindings for OpenGL ES,它面向的设备与 M3G 相同。OpenGL ES 是人们熟知的 OpenGL 3D 库的子集,事实上已成为约束设备上本地 3D 实现的标准。JSR 239 定义了一个几乎与 OpenGL ES 的 C 接口相同的 Java API,使现有 OpenGL 内容的移植更为容易。到 2005 年 9 月为止,JSR 239 还依然处于早期的蓝图设计状态。关于它是否会给手机带来深刻的影响,我只能靠推测。尽管 OpenGL ES 与其 API 不兼容,但却对 M3G 的定义产生了一定影响:JSR 184 专家组确保了 MSG 在 OpenGL ES 之上的有效实现。如果您了解 OpenGL,那么就会在 M3G 中看到许多似曾相识的属性。
  
  尽管还有其他可选技术,但 M3G 获得了所有主要电话制造商和运营商的支持。之前我提到过,游戏是最大的吸引力所在,但 M3G 是一种通用 API,您可以将其用于创建各种 3D 内容。未来的几年中,手机将广泛采用 3D API。
  
  您的第一个 3D 对象
  
  在第一个示例中,我们将创建一个如图 1 所示的立方体。
  
  
图 1. 示例立方体: a) 有顶点索引的正面图,b) 切割面的侧面视图(正面,侧面)
   

  这个立方体存在于 M3G 定义的右手坐标系中。举起右手、伸出拇指、食指和中指,保持其中任一手指与其他两指均成直角,那么拇指就表示 x 轴、食指表示 y 轴,中指表示 z 轴。试着将拇指和食指摆成图 1a 中的样子,那么您的中指必然指向自己。我在这里使用了 8 个顶点(立方体的顶点)并使立方体的中心与坐标系的原点相重合。
  
  从图 1 中可以看到,拍摄 3D 场景的摄像机朝向 z 轴的负轴方向,正对立方体。摄像机的位置和属性定义了随后将在屏幕上显示的东西。图 1b 展示了同一场景的侧面视图,这样您就可以更容易地看清摄像机究竟能看到 3D 世界中的哪些地方。限制因素之一就是观察角度,这与使用照相机的情况类似:长焦镜头的视野比广角镜头的观察角度要窄得多。因此观察角度决定了您的视野。与真实世界中的情况不同,3D 计算给我们增加了两个视图边界:近切割面和远切割面。观察角度和切割面共同定义了视域。视域中的一切都是可见的,而超出视域范围的一切均不可见。
  
查看本文来源
    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章