科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道基础软件VC编程实现数字图像的边缘检测

VC编程实现数字图像的边缘检测

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础

作者:刘 涛 来源:pcvc.net 2007年11月16日

关键字: VC 数字图像 边缘检测

  • 评论
  • 分享微博
  • 分享邮件
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像理解和分析的第一步往往就是边缘检测,目前它以成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。本文向读者简单介绍一下这个技术,并给出了在Visual C++环境下实现的代码。

  所谓边缘就是指图像局部亮度变化最显著的部分,它是检测图像局部变化显著变化的最基本的运算。对于数字图像,图像灰度灰度值的显著变化可以用梯度来表示,以边缘检测Sobel算子为例来讲述数字图像处理中边缘检测的实现:

  对于数字图像,可以用一阶差分代替一阶微分;

  △xf(x,y)=f(x,y)-f(x-1,y);

  △yf(x,y)=f(x,y)-f(x,y-1)

  求梯度时对于平方和运算及开方运算,可以用两个分量的绝对值之和表示,即:

  G[f(x,y)]={[△xf(x,y)] +[△yf(x,y)] } |△xf(x,y)|+|△yf(x,y)|;

  Sobel梯度算子是先做成加权平均,再微分,然后求梯度,即:

  △xf(x,y)= f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1)- f(x-1,y-1) - 2f(x,y-1) - f(x+1,y-1);

  △yf(x,y)= f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1)- f(x+1,y-1) - 2f(x+1,y) - f(x+1,y+1);

  G[f(x,y)]=|△xf(x,y)|+|△yf(x,y)|;

  上述各式中的像素之间的关系见图

f(x-1,y-1) f(x,y-1) f(x+1,y-1)
f(x-1,y) f(x,y) f(x+1,y)
f(x-1,y+1) f(x,y+1) f(x+1,y+1)
    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章