科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道第二人生的源码分析(12)天空显示的实现

第二人生的源码分析(12)天空显示的实现

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

在虚拟世界里,自然现象的实现是最需要实现的,比如天空的实现,以便反映是白天还是晚上,这样才逼真反映现实世界。

作者:第二人生 来源:blog【原创】 2008年1月12日

关键字: C++ Second Life caimouse 第二人生 软件

  • 评论
  • 分享微博
  • 分享邮件
在虚拟世界里,自然现象的实现是最需要实现的,比如天空的实现,以便反映是白天还是晚上,这样才逼真反映现实世界。在第二人生里实现的天空,还是比较好的,如下图所示:
蔡军生 2008/01/10 QQ:9073204 深圳
从上面的图片里,可以看到太阳在远处,并具有雾化的效果,这是早上太阳升起的效果。看到远处是浅蓝色的天空,与海边连接成一体。在室外场境的模拟中,最重要的就是天空体的实现。目前实现天空体有两种不同的实现方式:天体盒和天空穹。而第二人生里是采用天空盒的实现方式,这种方式是渲染的速度比较快,但纹理需要特别处理,才让人们看到的所有地方一样远的感觉。跟实现地面是一样的,都是使用网格和纹理来实现。下面就来通过代码仔细地分析怎么创建天空盒的网格,以及纹理的坐标设置。
 
#001 
#002 BOOL LLVOSky::updateGeometry(LLDrawable *drawable)
#003 {
#004      if (mFace[FACE_REFLECTION] == NULL)
#005      {
#006             LLDrawPoolWater *poolp = (LLDrawPoolWater*) gPipeline.getPool(LLDrawPool::POOL_WATER);
#007             mFace[FACE_REFLECTION] = drawable->addFace(poolp, NULL);
#008      }
创建反射表面。
 
#009 
#010      mCameraPosAgent = drawable->getPositionAgent();
#011      mEarthCenter.mV[0] = mCameraPosAgent.mV[0];
#012      mEarthCenter.mV[1] = mCameraPosAgent.mV[1];
#013 
#014      LLVector3 v_agent[8];
#015      for (S32 i = 0; i < 8; ++i)
#016      {
#017              F32 x_sgn = (i&1) ? 1.f : -1.f;
#018              F32 y_sgn = (i&2) ? 1.f : -1.f;
#019              F32 z_sgn = (i&4) ? 1.f : -1.f;
#020             v_agent[i] = HORIZON_DIST*0.25f * LLVector3(x_sgn, y_sgn, z_sgn);
#021      }
#022 
#023      LLStrider<LLVector3> verticesp;
#024      LLStrider<LLVector3> normalsp;
#025      LLStrider<LLVector2> texCoordsp;
#026      LLStrider<U32> indicesp;
#027      S32 index_offset;
#028      LLFace *face;     
#029 
 
下面开始创建天空盒的6个平面。
#030      for (S32 side = 0; side < 6; ++side)
#031      {
#032             face = mFace[FACE_SIDE0 + side];
#033 
#034             if (face->mVertexBuffer.isNull())
#035             {
#036                    face->setSize(4, 6);
设置每个表面有4个顶点构成,共有6个索引顶点。
 
#037                    face->setGeomIndex(0);
#038                    face->setIndicesIndex(0);
#039                    face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
#040                    face->mVertexBuffer->allocateBuffer(4, 6, TRUE);
上面分配顶点缓冲区和索引缓冲区。
 
#041                   
#042                    index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
#043                   
#044                    S32 vtx = 0;
#045                    S32 curr_bit = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X
#046                    S32 side_dir = side & 1; // even - 0, odd - 1
#047                    S32 i_bit = (curr_bit + 2) % 3;
#048                    S32 j_bit = (i_bit + 2) % 3;
#049 
#050                    LLVector3 axis;
#051                    axis.mV[curr_bit] = 1;
#052                    face->mCenterAgent = (F32)((side_dir << 1) - 1) * axis * HORIZON_DIST;
#053 
#054                    vtx = side_dir << curr_bit;
#055                    *(verticesp++) = v_agent[vtx];
#056                    *(verticesp++) = v_agent[vtx | 1 << j_bit];
#057                    *(verticesp++) = v_agent[vtx | 1 << i_bit];
#058                    *(verticesp++) = v_agent[vtx | 1 << i_bit | 1 << j_bit];
上面计算4个顶点坐标。
 
#059 
#060                    *(texCoordsp++) = TEX00;
#061                    *(texCoordsp++) = TEX01;
#062                    *(texCoordsp++) = TEX10;
#063                    *(texCoordsp++) = TEX11;
#064 
设置4个顶点的纹理坐标。
 
#065                    // Triangles for each side
#066                    *indicesp++ = index_offset + 0;
#067                    *indicesp++ = index_offset + 1;
#068                    *indicesp++ = index_offset + 3;
#069 
#070                    *indicesp++ = index_offset + 0;
#071                    *indicesp++ = index_offset + 3;
#072                    *indicesp++ = index_offset + 2;
上面设置每个表面由两个三角形构成索引。
 
#073             }
#074      }
#075 
#076      const LLVector3 &look_at = gCamera->getAtAxis();
#077      LLVector3 right = look_at % LLVector3::z_axis;
#078      LLVector3 up = right % look_at;
#079      right.normVec();
#080      up.normVec();
#081 
#082      const static F32 elevation_factor = 0.0f/sResolution;
#083      const F32 cos_max_angle = cosHorizon(elevation_factor);
#084      mSun.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_SUN, TRUE, mSun, cos_max_angle, up, right));
#085      mMoon.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_MOON, FALSE, mMoon, cos_max_angle, up, right));
#086 
#087      const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.01f;
#088             // gWorldPointer->getWaterHeight() + 0.01f;
#089      const F32 camera_height = mCameraPosAgent.mV[2];
#090      const F32 height_above_water = camera_height - water_height;
#091 
#092      BOOL sun_flag = FALSE;
#093 
#094      if (mSun.isVisible())
#095      {
#096             if (mMoon.isVisible())
#097             {
#098                    sun_flag = look_at * mSun.getDirection() > 0;
#099             }
#100             else
#101             {
#102                    sun_flag = TRUE;
#103             }
#104      }
#105     
#106      if (height_above_water > 0)
#107      {
#108 #if 1 //1.9.1
#109             BOOL render_ref = gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() == 0;
#110 #else
#111             BOOL render_ref = !(gPipeline.getVertexShaderLevel(LLPipeline::SHADER_ENVIRONMENT) >= LLDrawPoolWater::SHADER_LEVEL_RIPPLE);
#112 #endif
#113             if (sun_flag)
#114             {
#115                    setDrawRefl(0);
#116                    if (render_ref)
#117                    {
#118                           updateReflectionGeometry(drawable, height_above_water, mSun);
#119                    }
#120             }
#121             else
#122             {
#123                    setDrawRefl(1);
#124                    if (render_ref)
#125                    {
#126                           updateReflectionGeometry(drawable, height_above_water, mMoon);
#127                    }
#128             }
#129      }
#130      else
#131      {
#132             setDrawRefl(-1);
#133      }
#134 
#135 
#136      LLPipeline::sCompiles++;
#137      return TRUE;
#138 }
#139 
上面计算太阳和月亮的出现位置以及光照效果。
 
通过上面的分析,了解天空体的网格创建,纹理坐标的设置,以及太阳、月亮的效果计算。
 
    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章