科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道基础软件SQL Server 索引基础知识(2)----聚集索引,非聚集索引 索引基础知识(2)----聚集索引,非聚集索引

SQL Server 索引基础知识(2)----聚集索引,非聚集索引 索引基础知识(2)----聚集索引,非聚集索引

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

通过总结,不论是 聚集索引,还是非聚集索引,都是用B+树来实现的。

作者:ghj1976 来源:CSDN 2008年2月11日

关键字: 非聚集 聚集 SQL Server

  • 评论
  • 分享微博
  • 分享邮件

通过总结,我发现自己以前很多很模糊的概念都清晰了很多。

不论是 聚集索引,还是非聚集索引,都是用B+树来实现的。我们在了解这两种索引之前,需要先了解B+通过总结,我发现自己以前很多很模糊的概念都清晰了很多。

不论是 聚集索引,还是非聚集索引,都是用B+树来实现的。我们在了解这两种索引之前,需要先了解B+树。如果你对B树不了解的话,建议参看以下几篇文章:

BTree,B-Tree,B+Tree,B*Tree都是什么
http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

B+ 树的结构图:

B+ 树的特点:

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 不可能在非叶子结点命中;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

B+ 树中增加一个数据,或者删除一个数据,需要分多种情况处理,比较复杂,这里就不详述这个内容了。 

聚集索引(Clustered Index)

  • 聚集索引的叶节点就是实际的数据页
  • 在数据页中数据按照索引顺序存储
  • 行的物理位置和行在索引中的位置是相同的
  • 每个表只能有一个聚集索引
  • 聚集索引的平均大小大约为表大小的5%左右

下面是两副简单描述聚集索引的示意图: 

在聚集索引中执行下面语句的的过程:

select * from table where firstName = 'Ota'

 在聚集索引中搜索

一个比较抽象点的聚集索引图示:

聚集索引单个分区中的结构

非聚集索引 (Unclustered Index)  

  • 非聚集索引的页,不是数据,而是指向数据页的页。
  • 若未指定索引类型,则默认为非聚集索引
  • 叶节点页的次序和表的物理存储次序不同
  • 每个表最多可以有249个非聚集索引
  • 在非聚集索引创建之前创建聚集索引(否则会引发索引重建)

在非聚集索引中执行下面语句的的过程:

select * from employee where lname = 'Green'

Selecting rows using a nonclustered index

一个比较抽象点的非聚集索引图示:

非聚集索引的级别

 

什么是 Bookmark Lookup

虽然SQL 2005 中已经不在提  Bookmark Lookup 了(换汤不换药),但是我们的很多搜索都是用的这样的搜索过程,如下:
先在非聚集中找,然后再在聚集索引中找。

Bookmark Lookup 

http://www.sqlskills.com/ 提供的一个例子中,就给我们演示了 Bookmark Lookup  比 Table Scan 慢的情况,例子的脚本如下:

USE CREDITgo-- These samples use the Credit database. You can download and restore the-- credit database from here:-- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip-- NOTE: This is a SQL Server 2000 backup and MANY examples will work on -- SQL Server 2000 in addition to SQL Server 2005.--------------------------------------------------------------------------------- (1) Create two tables which are copies of charge:--------------------------------------------------------------------------------- Create the HEAPSELECT * INTO ChargeHeap FROM Chargego-- Create the CL TableSELECT * INTO ChargeCL FROM ChargegoCREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)go--------------------------------------------------------------------------------- (2) Add the same non-clustered indexes to BOTH of these tables:--------------------------------------------------------------------------------- Create the NC index on the HEAPCREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)go-- Create the NC index on the CL TableCREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)go--------------------------------------------------------------------------------- (3) Begin to query these tables and see what kind of access and I/O returns--------------------------------------------------------------------------------- Get ready for a bit of analysis:SET STATISTICS IO ON-- Turn Graphical Showplan ON (Ctrl+K)-- First, a point query (also, see how a bookmark lookup looks in 2005)SELECT * FROM ChargeHeap WHERE Charge_no = 12345goSELECT * FROM ChargeCL WHERE Charge_no = 12345go-- What if our query is less selective?-- 1000 is .0625% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 1000goSELECT * FROM ChargeCL WHERE Charge_no < 1000go-- What if our query is less selective?-- 16000 is 1% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 16000goSELECT * FROM ChargeCL WHERE Charge_no < 16000go--------------------------------------------------------------------------------- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?--------------------------------------------------------------------------------- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 4000goSELECT * FROM ChargeCL WHERE Charge_no < 4000go-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3000goSELECT * FROM ChargeCL WHERE Charge_no < 3000go-- And - you can narrow it down by trying the middle ground:-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3500goSELECT * FROM ChargeCL WHERE Charge_no < 3500go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3250goSELECT * FROM ChargeCL WHERE Charge_no < 3250go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3375goSELECT * FROM ChargeCL WHERE Charge_no < 3375go-- Don't worry, I won't make you go through it all :)-- For the Heap Table (in THIS case), the cutoff is: 0.21%SELECT * FROM ChargeHeap WHERE Charge_no < 3383goSELECT * FROM ChargeHeap WHERE Charge_no < 3384go-- For the Clustered Table (in THIS case), the cut-off is: 0.21%SELECT * FROM ChargeCL WHERE Charge_no < 3438SELECT * FROM ChargeCL WHERE Charge_no < 3439go

树。如果你对B树不了解的话,建议参看以下几篇文章:

BTree,B-Tree,B+Tree,B*Tree都是什么
http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

B+ 树的结构图:

B+ 树的特点:

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 不可能在非叶子结点命中;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

B+ 树中增加一个数据,或者删除一个数据,需要分多种情况处理,比较复杂,这里就不详述这个内容了。 

聚集索引(Clustered Index)

  • 聚集索引的叶节点就是实际的数据页
  • 在数据页中数据按照索引顺序存储
  • 行的物理位置和行在索引中的位置是相同的
  • 每个表只能有一个聚集索引
  • 聚集索引的平均大小大约为表大小的5%左右

下面是两副简单描述聚集索引的示意图: 

在聚集索引中执行下面语句的的过程:

select * from table where firstName = 'Ota'

 在聚集索引中搜索

一个比较抽象点的聚集索引图示:

聚集索引单个分区中的结构

非聚集索引 (Unclustered Index)  

  • 非聚集索引的页,不是数据,而是指向数据页的页。
  • 若未指定索引类型,则默认为非聚集索引
  • 叶节点页的次序和表的物理存储次序不同
  • 每个表最多可以有249个非聚集索引
  • 在非聚集索引创建之前创建聚集索引(否则会引发索引重建)

在非聚集索引中执行下面语句的的过程:

select * from employee where lname = 'Green'

Selecting rows using a nonclustered index

一个比较抽象点的非聚集索引图示:

非聚集索引的级别

 

什么是 Bookmark Lookup

虽然SQL 2005 中已经不在提  Bookmark Lookup 了(换汤不换药),但是我们的很多搜索都是用的这样的搜索过程,如下:
先在非聚集中找,然后再在聚集索引中找。

Bookmark Lookup 

http://www.sqlskills.com/ 提供的一个例子中,就给我们演示了 Bookmark Lookup  比 Table Scan 慢的情况,例子的脚本如下:

USE CREDITgo-- These samples use the Credit database. You can download and restore the-- credit database from here:-- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip-- NOTE: This is a SQL Server 2000 backup and MANY examples will work on -- SQL Server 2000 in addition to SQL Server 2005.--------------------------------------------------------------------------------- (1) Create two tables which are copies of charge:--------------------------------------------------------------------------------- Create the HEAPSELECT * INTO ChargeHeap FROM Chargego-- Create the CL TableSELECT * INTO ChargeCL FROM ChargegoCREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)go--------------------------------------------------------------------------------- (2) Add the same non-clustered indexes to BOTH of these tables:--------------------------------------------------------------------------------- Create the NC index on the HEAPCREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)go-- Create the NC index on the CL TableCREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)go--------------------------------------------------------------------------------- (3) Begin to query these tables and see what kind of access and I/O returns--------------------------------------------------------------------------------- Get ready for a bit of analysis:SET STATISTICS IO ON-- Turn Graphical Showplan ON (Ctrl+K)-- First, a point query (also, see how a bookmark lookup looks in 2005)SELECT * FROM ChargeHeap WHERE Charge_no = 12345goSELECT * FROM ChargeCL WHERE Charge_no = 12345go-- What if our query is less selective?-- 1000 is .0625% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 1000goSELECT * FROM ChargeCL WHERE Charge_no < 1000go-- What if our query is less selective?-- 16000 is 1% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 16000goSELECT * FROM ChargeCL WHERE Charge_no < 16000go--------------------------------------------------------------------------------- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?--------------------------------------------------------------------------------- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 4000goSELECT * FROM ChargeCL WHERE Charge_no < 4000go-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3000goSELECT * FROM ChargeCL WHERE Charge_no < 3000go-- And - you can narrow it down by trying the middle ground:-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3500goSELECT * FROM ChargeCL WHERE Charge_no < 3500go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3250goSELECT * FROM ChargeCL WHERE Charge_no < 3250go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3375goSELECT * FROM ChargeCL WHERE Charge_no < 3375go-- Don't worry, I won't make you go through it all :)-- For the Heap Table (in THIS case), the cutoff is: 0.21%SELECT * FROM ChargeHeap WHERE Charge_no < 3383goSELECT * FROM ChargeHeap WHERE Charge_no < 3384go-- For the Clustered Table (in THIS case), the cut-off is: 0.21%SELECT * FROM ChargeCL WHERE Charge_no < 3438SELECT * FROM ChargeCL WHERE Charge_no < 3439go

 

查看本文来源
    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章