ZDNet至顶网软件频道消息:微软正在着手将其内部机器学习技术向云服务迁移,希望借此使其Azure服务能够在与谷歌及Amazon同类产品的竞争当中取得优势。
该公司的全新Azure ML服务于本周一发布,这意味着开发者们可以访问由Azure云托管的机器学习系统甚至将自己的应用程序直接与其进行对接。
这项技术让开发者们得以直面机器学习机制及其相关技术成果,其中包括深层学习系统,并将其应用到自己的应用程序当中。
最近,谷歌宣布公司内的一位工程师已经建立起一套系统,旨在利用神经网络调整19项不同输入与1项单一输出结果——即数据中心能源使用效率——之间的关系。该系统的实际表现非常出色,谷歌在它的帮助下已经能够更好地随时间推移模拟出基础设施的实际能源消耗情况。
在Azure ML的辅助下,微软表示将能够创建多种面向开发者们的相关系统类型,并为其提供广泛普及所必需的设置、培训以及技术使用指导等配套方案。
Azure ML拥有“一系列有助于清理数据的工具,”微软公司高管Joseph Sirosh在接受采访时解释道。此外,该服务还能够与高人气数学软件R相兼容。Azure ML服务也为用户打造了一套良好的使用途径,使其能够通过拖拽操作将多种机器学习技术整合在一起,从而构建起具备突出可视化效果与内容理解方式的应用程序方案。
“机器学习这片新天地已经向大家敞开了大门,”Sirosh表示。“大家只需在其中点击几下,就能获得与机器学习模式紧密匹配的API。”
Sirosh曾经在云服务之王Amazon公司效力过近十年,并在转投微软麾下之后帮助公司开发出多种内部机器学习系统。
预计该服务将在一个月内发布Beta测试版本,而已经开始使用Azure ML的少数早期客户则利用它实现了多种用途:根据网络客户在网站上的操作活动预测他们对哪些线上产品更感兴趣,或者构建系统方案来检测大学校区内的耗电量浮动、从而帮助工作人员进行IT设备故障诊断。
尽管机器学习已经是一项历史悠久而且应用广泛的技术,但微软认为将其以云服务形式推出仍然能够有效帮助使用者摆脱相当一部分当前面临的技术障碍。
“机器学习拥有令人难以置信的强大能力——它能让我们身边的每一款应用程序实现智能化,”Sirosh指出。“我希望机器学习这一令人振奋的技术成果能够得到广泛宣传并获得大家的理解,其重大意义甚至不亚于云计算的诞生。”
当然,他认为微软将是有能力提供此类服务的最佳厂商之一。
“微软与谷歌是目前世界上机器学习人才的两大储备库,”Sirosh表示。而就目前来讲,谷歌还没有将其快速机器学习系统引入到云环境当中。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。