ZDNet至顶网软件频道消息:微软正在着手将其内部机器学习技术向云服务迁移,希望借此使其Azure服务能够在与谷歌及Amazon同类产品的竞争当中取得优势。
该公司的全新Azure ML服务于本周一发布,这意味着开发者们可以访问由Azure云托管的机器学习系统甚至将自己的应用程序直接与其进行对接。
这项技术让开发者们得以直面机器学习机制及其相关技术成果,其中包括深层学习系统,并将其应用到自己的应用程序当中。
最近,谷歌宣布公司内的一位工程师已经建立起一套系统,旨在利用神经网络调整19项不同输入与1项单一输出结果——即数据中心能源使用效率——之间的关系。该系统的实际表现非常出色,谷歌在它的帮助下已经能够更好地随时间推移模拟出基础设施的实际能源消耗情况。
在Azure ML的辅助下,微软表示将能够创建多种面向开发者们的相关系统类型,并为其提供广泛普及所必需的设置、培训以及技术使用指导等配套方案。
Azure ML拥有“一系列有助于清理数据的工具,”微软公司高管Joseph Sirosh在接受采访时解释道。此外,该服务还能够与高人气数学软件R相兼容。Azure ML服务也为用户打造了一套良好的使用途径,使其能够通过拖拽操作将多种机器学习技术整合在一起,从而构建起具备突出可视化效果与内容理解方式的应用程序方案。
“机器学习这片新天地已经向大家敞开了大门,”Sirosh表示。“大家只需在其中点击几下,就能获得与机器学习模式紧密匹配的API。”
Sirosh曾经在云服务之王Amazon公司效力过近十年,并在转投微软麾下之后帮助公司开发出多种内部机器学习系统。
预计该服务将在一个月内发布Beta测试版本,而已经开始使用Azure ML的少数早期客户则利用它实现了多种用途:根据网络客户在网站上的操作活动预测他们对哪些线上产品更感兴趣,或者构建系统方案来检测大学校区内的耗电量浮动、从而帮助工作人员进行IT设备故障诊断。
尽管机器学习已经是一项历史悠久而且应用广泛的技术,但微软认为将其以云服务形式推出仍然能够有效帮助使用者摆脱相当一部分当前面临的技术障碍。
“机器学习拥有令人难以置信的强大能力——它能让我们身边的每一款应用程序实现智能化,”Sirosh指出。“我希望机器学习这一令人振奋的技术成果能够得到广泛宣传并获得大家的理解,其重大意义甚至不亚于云计算的诞生。”
当然,他认为微软将是有能力提供此类服务的最佳厂商之一。
“微软与谷歌是目前世界上机器学习人才的两大储备库,”Sirosh表示。而就目前来讲,谷歌还没有将其快速机器学习系统引入到云环境当中。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。