作为EMC的企业数据治理高级总监,Barbara Latulippe 向 Potential at Work 社区讲述了她在制定企业数据质量和治理路线图方面的工作经历。 她提倡采取一种协作型、统一的方法来定义数据质量,并强调在所有业务部门(而不仅仅在 IT 与个别业务部门之间)开展合作的必要性。 凭借超过 25 年的 MDM 和企业应用系统实践经验,她对自己的上述见解确信无疑。
信息负责人如何与企业不同人员开展合作,以帮助他们定义数据质量?
Latulippe: 我们会设立自己的信息治理委员会,该委员会由不同业务部门以及不同职能部门参与。 我们不断努力为所有企业属性建立通用定义,这些定义一旦获得审批,我们就会将其纳入自己的业务词汇表中。 现在,可以说我们已经建立了一个通用定义,该定义已获得治理委员会的批准,并受到变更管理的控制。 如果某人提出一个方案,希望为特定字段添加值,或者以不同的方式使用该字段,则他们需要提供业务方案以及成本影响说明,并获得治理委员会的批准。
您是否曾经因数据质量定义而产生冲突?
Latulippe: 需要让数据使用者与数据创建者进行交流。 我认为这样可以帮助双方更加深刻地认识到数据是如何在需要它的业务流程中使用的。 以往,这些团队无法真正进行协作。 如果发生无法解决的实际冲突,通常意味着需要一个新的数据字段。 需要做的是,跟踪数据在企业中的移动,并提供相应财务支持。
例如,我们对缺少邮政编码所造成的影响进行了成本分析, 结果发现,并非所有应用系统都需要在其数据模型或数据输入屏幕中提供邮政编码。 该委员会跟踪整个流程,发现某个数据点一旦缺失,就会对公司产生巨大的成本影响。 因此,该数据点现在已成为全球范围的必填字段,在输入时会对此进行实时检查。
在治理委员会中,不同领域的人员会共同定义数据质量。 同一组数据可以具有不同的数据质量定义吗?
Latulippe: 让我们回到数据生命周期中寻找答案,使用者所定义的高质量数据以及营销需要的数据与某人应 CRM 需要尝试填入销售订单中的数据是不同的。 数据在其使用生命周期中的位置将决定每个属性所需的质量级别。 随着该生命周期从营销活动到数据保留的成熟度,以及所使用属性数量的增加,预期的数据质量也会提高。
是否要让企业的业务部门分担数据质量和治理责任? 请考虑根据您的角色获得相应级别的数据质量认证。
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。