在2014年7月1日的Spark Summit上,Databricks宣布终止对Shark的开发,将重点放到Spark SQL上。Databricks表示,Spark SQL将涵盖Shark的所有特性,用户可以从Shark 0.9进行无缝的升级。
本次Databricks推广的Shark相关项目一共有两个,分别是Spark SQL和新的Hive on Spark(HIVE-7292),在介绍这两个项目之前,我们首先关注下被终止的项目Shark。
About Shark
Shark发布于3年前,那个时候,Hive可以说是SQL on Hadoop的唯一选择,负责将SQL编译成可扩展的MapReduce作业。鉴于Hive的性能以及与Spark的兼容,Shark项目由此而生。
Shark即Hive on Spark,本质上是通过Hive的HQL解析,把HQL翻译成Spark上的RDD操作,然后通过Hive的metadata获取数据库里的表信息,实际HDFS上的数据和文件,会由Shark获取并放到Spark上运算。
Shark的最大特性就是快和与Hive的完全兼容,且可以在shell模式下使用rdd2sql()这样的API,把HQL得到的结果集,继续在scala环境下运算,支持自己编写简单的机器学习或简单分析处理函数,对HQL结果进一步分析计算。
除去Spark本身的迭代计算,Shark速度快的原因还在于其本身的改造,比如:
终止Shark的原因
在会议上,Databricks表示,Shark更多是对Hive的改造,替换了Hive的物理执行引擎,因此会有一个很快的速度。然而,不容忽视的是,Shark继承了大量的Hive代码,因此给优化和维护带来了大量的麻烦。随着性能优化和先进分析整合的进一步加深,基于MapReduce设计的部分无疑成为了整个项目的瓶颈。
因此,为了更好的发展,给用户提供一个更好的体验,Databricks宣布终止Shark项目,从而将更多的精力放到Spark SQL上。
About Spark SQL
既然不是基于Hive,Spark SQL究竟有什么样的改变,这里我们不妨看向 张包峰的博客。Spark新发布的Spark SQL组件让Spark对SQL有了别样于Shark基于Hive的支持。参考官方手册,具体分三部分:
第一点对SQL的支持主要依赖了Catalyst这个新的查询优化框架(下面会给出一些Catalyst的简介),在把SQL解析成逻辑执行计划之后,利用Catalyst包里的一些类和接口,执行了一些简单的执行计划优化,最后变成RDD的计算。虽然目前的SQL解析器比较简单,执行计划的优化比较通配,还有些参考价值,所以看了下这块代码。目前这个PR在昨天已经merge进了主干,可以在SQL模块里看到这部分实现,还有catalyst模块看到Catalyst的代码。下面会具体介绍Spark SQL模块的实现。
第二点对Parquet的支持不关注,因为我们的应用场景里不会使用Parquet这样的列存储,适用场景不一样。
第三点对Hive的这种结合方式,没有什么核心的进展。与Shark相比,Shark依赖Hive的Metastore,解析器等能把hql执行变成Spark上的计算,而Hive的现在这种结合方式与代码里引入Hive包执行hql没什么本质区别,只是把hive hql的数据与RDD的打通这种交互做得更友好了。
About HIVE-7292
HIVE-7292更像是Spark SQL成为标准SQL on Spark项目的补充,首先它是一个Hive on Spark Project,旨在服务已有Hive投入的机构,这个项目将Spark作为一个替代执行引擎提供给Hive,从而为这些机构提供一个迁往Spark的途径,提供一个更流畅的Hive体验。
好文章,需要你的鼓励
OpenAI 宣布重大升级:ChatGPT 现可记忆用户全部历史对话,并据此调整回复。这项功能将使 ChatGPT 随时间更了解用户,提供个性化响应。新功能包括"引用保存的记忆"和"引用聊天历史",目前仅向付费用户开放。虽然提升了实用性,但也引发了隐私方面的担忧。
本文探讨了人工智能聊天机器人对人类情感和关系的潜在影响。作者指出,虽然AI可以模仿关怀,但缺乏真实情感,可能导致人们对亲密关系的期望发生改变。特别是对儿童来说,过度依赖AI可能阻碍情感发展。文章呼吁我们要警惕AI带来的长期影响,保持人际交往的真实性。
AI革命的下一波浪潮不仅仅关乎拥有AI技术,更在于拥有能让AI真正理解业务的人才。虽然媒体关注的是构建大语言模型和复杂AI代理的工程师,但在前瞻性公司的分析部门中,一场悄然革命正在酝酿:AI分析师的兴起。这个角色将成为连接AI技术与业务实践的关键纽带,对企业数字化转型至关重要。
Google 推出了 Firebase Studio,这是一个基于云的人工智能辅助开发环境。它结合了 Project IDX、GenKit 和 Gemini 等技术,旨在帮助开发者快速原型设计和构建应用程序。然而,一些开发者反馈称,目前该工具的 AI 功能还不够成熟,难以生成高质量的可用代码。这表明 AI 辅助开发工具虽有潜力,但仍无法完全取代专业开发人员的技能和经验。