ZDNet至顶网软件频道消息:在IBM勾勒出的Watson认知计算系统蓝图中,该系统最终将提升研发回报。在纽约的一个活动上,IBM展示了Watson的新用途,借此将认知计算推向商用,并使Watson Group变成公司的增长动力。
实施Watson
由于上面这些变数,为什么医疗和科研领域是Watson的核心应用领域就显而易见了。Watson可以伸缩,并且能够重复使用知识。Gold指出医疗机构可以选择将内容限定在Pubmed数据库或者Medline数据库,将搜索的范围限定为帕金森综合症。
IBM的挑战:给Watson足够多的知识和内容,扩展更多的行业用例并且让Watson的使用变得更像是一个“交钥匙”工程。
在研发上的投资回报率
Watson星期四的升级最大的看点在于IBM将推动研发的投资回报率,在科技领域,研发是很大的一块投资,占到收入的百分之三到百分之十几的比例,有时候甚至更高。IBM在研发上的投入占到每年收入的6%。
如果Watson能够将药物推向市场的时间平均缩短8.5年,或者能够更早地让研发走出死胡同,那就是真正的回报。
研发的回报将是变革性的,会有更好的故事可以讲述,而不是更好地处理呼叫中心事务。
Gold指出,IBM将研发费用的三分之一投入到认知计算上。关于Watson的投资回报,最好的故事应该是Watson能够节省自身的研发费用——或者甚至是帮助获得资金。Gold表示Watson“间接地”改变了IBM的研发方式。如果IBM希望企业大量涌向Watson,它就应该利用自己的研发部门作为一个案例,在保持同等效率的前提下,将研发的投入降到销售收入的5%。
年销售额一千亿美元的百分之一意味着Watson完全回报了IBM最初给Watson Group的投资。Watson能够创造食谱,这很好,但是这个星球上的每一家企业都会注意到认知计算能够让研发变得更好的承诺。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。