数据是我们的,也是你们的,但归根结底是每一个个体的。
“在大数据时代,企业之间没有竞争,只有合作。”这是浪潮集团执行总裁王柏华所提出的看法。他认为,在大数据时代,数据的价值不仅在于数据本身,最主要还在于数据之间的关联关系,因此没有一家企业可以包揽用户的IT需求。
用北京大数据研究院院长鄂维南院士的话说,虽然现在政府对大数据行业已经非常重视,企业对此的需求也非常大,但是大数据的落地仍然很困难,其中的问题在于中国市场中的数据量很大、类型复杂,同时人才紧缺、科研队伍整体相对落后,整个市场几乎是处于无理性的生长。
换而言之,一堆数据躺在那是没有用的,只有经过梳理,总结出规律后并应用于行业、企业,这才是有用的。在这背后,我们欠缺的就是一个推手,对数据进行规划和梳理。这正是浪潮正在做的事情,但不是自己去做,而是协同100个数据所去做,每个数据所会对应一个细分行业。
布阵大数据产业:奇门遁甲,第一卦阵
在浪潮看来,大数据时代最大的问题不是没数据可用,而是怎么用。王柏华表示,数据的应用关键在于释放、流通、聚合,释放就是让数据资源化,流通就是让数据商品化,而聚合就是融合。三者之中,聚合又是重中之重。“数据聚合不了有什么价值?工商用工商的,税务用税务的,这是没有价值的,只有工商、税务、企业把数据结合起来才能创造价值。”他说道。
然而,要全面覆盖这三个点并不容易,浪潮或许是其中之一。基于这样的思考,浪潮在今年的Inspu rWorld大会上就提出了“公司+创客”大数据产业模型,这一模型之下,包括几个重要的部分,专注于数据应用的A创客、专注于数据生产的B创客以及浪潮打造的天元数据网交易平台、100个数据所和大数据创客中心等。王柏华将此形容为“奇门遁甲、第一卦阵”,“我们不是设好阵形请大家来挑阵,而是希望和更多的企业一起训练这个阵。”每谈到这,他都显得有点兴奋。
浪潮在大数据产业的定位很明确,就是把数据整合在一起,在这方面他是具备优势的。首先浪潮从五年前云计算刚萌芽的时候就已经开始有意识地采集数据,至今其已积攒了42PB的数据,并且这些数据这些年也一直在运营,同时,浪潮近两年也还在不断发力云生态,他知道各行各业的关键数据在哪,清楚如何对庞大的数据进行规范整理。
王柏华也明确表示,浪潮要做的是释放数据的能量,致力于为社会提供可信的数据支撑。“我们要做的是与国家的双创政策结合在一起,推动100个城市把B创客招来,对数据进行整理,并释放出去,支持A创客的数据应用,这个阵型基本就是这样。”他介绍道,“浪潮这个阵型也可以叫‘太极生两仪,两仪生四象’。这个阵型不是消灭敌人的,而是消灭大数据产业不能发展的问题的。”
所有数据所都必须深扎行业
在这样一个阵形之中,我想再重点说说这100个数据所,他们可以说是数据规划的核心。
王柏华表示,每个人、每个企业都可以申请成为数据所,但是浪潮准入门槛也是比较高的。首先,你要有数据,其次,你要对行业数据有极其深刻的理解。
这样来看,这些“通关”了的数据所想必一定是高格局、高格调的,并且对行业有着深刻认识的。他们要做的事,就是梳理、规划行业数据,指导B创客进行有方向的数据采集。从10月26日召开的InspurWorld 2016大会开始,浪潮正式对外开放了数据所的授权,到目前已经有三、四十个数据所被认领了。王柏华表示,浪潮希望有更多的企业加入进来,认领数据所,成为“所长”,为企业、为行业、为地方经济去创造价值。
从这点来看,浪潮确实已经非常清楚地认识到了企业之间必须全面合作,而他要搭的正是这样一个合作的平台。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。