…… 您恐怕还是难逃死厄。
对于那些患有严重心脏病的患者,人工智能在预测病痛发作及致死时间方面的表现优于人类医生。这一结论已经在本周《放射学》杂志发表的论文当中得到证实。
一支由伦敦帝国理工学院MRC伦敦医学科学研究所(简称LMS)领导的医疗与计算机科学家小组打造出第一套解决方案,旨在利用机器学习技术研究心脏病。
肺高血压是一种肺部供氧埃及压力水平增高的病症,如果不及时加以治疗则很可能危及病患生命。英国罹患这种病症的患者达7000人,且三分之一患者会在确认后的五年之内死于心力衰竭。以往的死亡风险往往由放射科医师通过手动测量连续心脏功能的方式来计算。而根据我们得到的消息,此次最新发布的AI软件能够在数秒钟内分析MRI扫描及其它计数,并几乎实时做出预测。在此结论基础之上,医生们将能够更快且更好地制定针对性治疗计划。
“计算机能够在数秒之内完成分析,同时解释来自医学成像、血液测试以及其它调查的数据,且无需任何人为操作的介入。其能够帮助医生在正确时间为正确的患者提供正确的治疗,”论文联合作者兼伦敦大学学院研究员Tim Dawes解释称。
该小组发布的论文指出,患者必须接受心脏磁共振成像扫描以进行心脏功能评估。扫描结果将被转换为虚拟三维模型,用以映射心脏右心室中所形成压力的方向与大小。每位患者需要步行六分钟,并将此距离中的监测数据添加到心脏模型当中以供软件进行分析。
线性回归作为一种重要的机器学习技术,被用于追踪心脏健康与工作情况同这些变量之间的关系,从而估算随着疾病发展而导致心力衰竭的具体风险。
病患会根据实际风险类别被该AI分类为“非常高”、“高”、“中”与“低”几等。举例来说,被划分为风险“非常高”一等的患者在未来五年内有40%的生存机率; 而“低”风险患者在同一周期内的生存机率则高达90%。
五年内不同分类患者生存机率预测图表(图片来源:O'Regan et al.)
这项项目已经得到伦理研究委员会的预告批准,基于来自256位英国国民健康保险制度内病患的MRI扫描图,且研究工作已经得到他们的书面同意。在研究过程中,三分之一病患陆续辞世。
“应用机器学习”技术能够“从心脏MR成像中获取数据,进而更为准确以对肺高血压病患做出预测”,这份研究论文给出结论称。
“与传统成像、血液动力学、功能与临床标记方法相比,包含三维心脏运动模型的机器学习生存机率计算模型能够带来更为理想的预测后效益。使用心脏MR成像的机器学习方案应当成为指导患者诊疗管理的关键性工具。”
研究人员计划通过对来自不同医院的患者数据进行测试以验证该软件的结果准确性。软件的设计目标仅限于可能死于相关并发症的心脏病患者,因此其训练数据也必须与此要求相符。开发团队表示,其在为程序提供训练素材时需要牢记这一点,否则很可能给结果带来偏差。
总体而言,这款AI方案的开发目标在于更准确地预测患者的生存情况,并帮助医生尽快为患有肺动脉高血压及其它以及疾病的患者提供最佳治疗方案。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。