ZD至顶网软件频道消息:人工智能可以比真正的医生更准确地预测严重心脏疾病患者可能何时死亡。本周在《放射学》上发表的一篇文章如是说。
由伦敦帝国学院的MRC伦敦医学科学研究所(LMS)科学家领导的医务人员和计算机科学家小组创建了一款利用机器学习研究心脏病的计算机程序,据称是业界的首例。
肺动脉高压的病症表现为供应氧气的肺动脉压力水平增加,如果不及时治疗的话是颇为危险的。在英国,受肺动脉高压影响的人达7000人,三分之一的患者在确诊得了此病后5年内死于心力衰竭。
放射科医生计算死亡风险的方法通常是通过手工测量持续地监控心脏功能。记者获悉,LMS的人工智能软件可以在几秒内分析MRI扫描资料和其他资料,几乎即时就可作出预测:医生根据其结果可以更快地作出更好的治疗计划。
伦敦大学学院研究员Tim Dawes是上述文章的联合作者,他表示,“计算机可在几秒钟内完成分析,可即时解析来自数据成像、血液测试和其他来源的资料,而且无需人工干预。这可以帮助医生在适当的时间为病人提供正确的治疗。”
LMS团队的文章提到,患者需先进行心脏磁共振成像,以评估患者的心脏功能。扫描资料其后被投射到一个虚拟三维模型里,该模型对心脏右心室积累的压力的方向和大小做映射处理。患者需步行6分钟,该分析软件会将患者在该时间内完成的距离及心脏模型添加到混合数据里。
线性回归是一种监督机器学习技术。所有这些变量与心脏性能之间的关系的跟踪用了线性回归,以在疾病的发展过程中评估心力衰竭的风险。
人工智能会将患者根据“非常高”、“高”、“温和”和“低”等风险类别进行风险排序。例如,“非常高”风险的病人五年后生存的机会只有40%,而与此相比,“低”风险患者的机会约为90%。
不同类别的患者五年后生存机会的预测…… 来源:O'Regan诸人。
该项研究曾预先得到研究伦理委员会的批准,研究项目基于256位NHS病人的核磁共振扫描资料,这些病人对自己的医疗记录用于研究做出过书面同意。他们中的三分之一已不在人世。
该项研究得出的结论是,“应用机器学习处理心脏成像”数据可以“在肺动脉高压的情况下对病人的结果“获得更精确的预测”。
该研究还称,“研究模型中监督机器学习生存模型用了三维心脏运动数据,与传统成像和血流动力学型、功能型和临床标记比较提供了增量预测的优势。使用核磁心脏成像的机器学习经评估后可望成为指导病人管理的工具。”
有关研究人员计划用来自不同医院的病人数据测试该款软件,以验证文章中的结果。该款软件的限制之一是心脏病患者可能是死于别的相关疾病,因而会扭曲用于人工智能训练的数据。LMS团队表示,他们意识到在调教程序时需要牢记这一点。
总之,其目标是改进该款软件,以更好地预测病人的生存以及帮助医生为肺动脉高压患者及其他心脏症状患者尽快地提供最好的治疗计划。
好文章,需要你的鼓励
五家光学存储初创公司正在开发长期存储技术,旨在用超过100年寿命的光学介质替代只有5-7年寿命的磁带。这些公司包括Cerabyte、Ewigbyte、HoloMem、Optera和SPhotonix,它们的技术类似微软Project Silica项目。光学存储介质具有更强的化学、冲击、辐射、水和热抗性,同时保持低能耗和高容量特性。
卡内基梅隆大学团队提出DistCA技术,通过分离AI模型中的注意力计算解决长文本训练负载不平衡问题。该技术将计算密集的注意力任务独立调度到专门服务器,配合乒乓执行机制隐藏通信开销,在512个GPU的大规模实验中实现35%的训练加速,为高效长文本AI模型训练提供了新方案。
Nutanix发布分布式主权云产品组合更新,为多云环境提供更安全的运营和管理功能。该解决方案支持企业在分布式环境中灵活部署和治理基础设施,运行传统虚拟机、现代云原生和AI应用。新功能包括支持完全断网环境的暗站点管理、政府云集群正式发布、Kubernetes平台增强安全合规性、企业AI平台集成NVIDIA微服务,以及云平台新增跨站点灾难恢复能力,为用户提供统一管理和运营简化体验。
清华大学研究团队提出3DThinker框架,首次让AI具备类似人类的三维空间想象能力。该系统在推理过程中插入特殊的三维想象符号,不依赖外部工具或大量标注数据,就能从有限的二维图像中构建三维心理模型。在多个空间推理基准测试中,3DThinker相比传统方法性能提升达50-100%,为自动驾驶、机器人导航、虚拟现实等领域的AI应用开辟了新路径。