近日,大规模视频分类比赛ACM MM LSVC公布了本年度最佳成绩,阿里巴巴iDST团队凭借平均准确率87.41%夺得冠军。
ACM MM是全球顶级的机器视觉会议,LSVC作为ACM MM的重要一部分,全称为Large-Scale Video Classification Challenge,主要考验参赛队伍在大规模视频分类算法方面的能力。
比赛数据集包含了来自Youtube的大约16万的视频,一共8000个小时。需要参赛队伍对视频中的500类内容做出识别,包含社会事件(如:橄榄球比赛)、物体(如:熊猫)、场景(如海滩)、动作(如:制作蛋糕)。
视频分类算法涉及到非常多的技术,包括视频帧特征提取(frame feature extraction)、视频帧特征集成(frame feature aggregation)、多模态的视频信息提取(视频画面、语音、物体运动、场景等模态)等方面。
iDST官网上的“视频标签预测”DEMO
阿里巴巴iDST团队采用了inception-resnet-v2 和 Squeeze-and-Excitation Networks 对视频帧特征进行提取,并且采用NetVLAD对提取到的视频帧特征进行集成。结合多模态信息的融合之后,单模型在验证集上的平均准确率达到了84.85%,融合多模型达到87.41%。
此外,大规模的视频处理能力也是比赛考验的重要方面。阿里巴巴iDST拥有一个强大的视频分析平台,可处理来自优酷土豆的百万量级的视频。这为高效地对LSVC数据集提取特征进行实验提供了帮助。
据阿里巴巴iDST视频算法高级专家刘扬介绍,这些视频分析算法目前已应用在包括优酷、土豆、UC、闲鱼等在内的多个业务中,有效改善了用户在视频搜索、推荐、编辑等方面的体验。“我们正在将这样的能力集成到阿里云ET上对外服务”。
作为阿里巴巴对外技术输出的窗口,阿里云目前提供了从计算能力、开发框架、基础AI能力到行业全局智能在内的整套服务。
iDST全称Institute of Data Science & Technologies,是阿里巴巴内部的尖端研究机构,专注于AI领域的前沿性研究。由金榕、任小枫、华先胜、司罗等知名科学家领导。在ACM MM中,阿里巴巴亦有三篇论文入选。
好文章,需要你的鼓励
杜克大学研究团队建立了首个专门针对Web智能体攻击检测的综合评估标准WAInjectBench。研究发现,现有攻击手段极其多样化,从图片像素篡改到隐藏弹窗无所不包。虽然检测方法对明显恶意指令有中等效果,但对隐蔽攻击几乎无能为力。研究构建了包含近千个恶意样本的测试数据库,评估了十二种检测方法,揭示了文本和图像检测的互补性。这项研究为Web智能体安全防护指明了方向,提醒我们在享受AI便利时必须保持安全意识。
生成式AI的兴起让谷歌和Meta两大科技巨头受益匪浅。谷歌母公司Alphabet第三季度广告收入同比增长12%达742亿美元,云服务收入增长33%至151.5亿美元,季度总收入首次突破千亿美元大关。Meta第三季度收入512.5亿美元,同比增长26%。两家公司都将大幅增加AI基础设施投资,Meta预计2025年资本支出提升至700亿美元,Alphabet预计达910-930亿美元。
加州大学圣地亚哥分校研究团队系统研究了AI智能体多回合强化学习训练方法,通过环境、策略、奖励三大支柱的协同设计,提出了完整的训练方案。研究在文本游戏、虚拟家庭和软件工程等多个场景验证了方法有效性,发现简单环境训练能迁移到复杂任务,监督学习初始化能显著减少样本需求,密集奖励能改善学习效果。这为训练能处理复杂多步骤任务的AI智能体提供了实用指南。