至顶网软件频道消息: 思科正在围绕Google Cloud的混合云服务平台——最新更名为Anthos——扩大与Google的合作。
思科将把自己一部分核心硬件平台和软件产品与Google Cloud的Anthos(以前的Cloud Service Platform)进行集成,这么做是为了在企业越来越多地采用所谓“多云”战略的时候会考虑选择思科。所谓多云战略,是指计算工作负载分布在多个云平台和私有云数据中心。
Anthos可以说是Google混合云战略的最新版本。Anthos旨在帮助客户将云工作负载转移到私有数据中心,并以同样高效的方式运行这些负载。Google的目标是让云端和本地数据中心运行服务变得更加简单,让客户可以更好地选择运行应用的环境。这一切都很好,但这些客户也需要确保他们的本地基础设施完全可以在不中断的情况下运行这些云工作负载,而这正是思科认为自己可以发挥作用的地方。
这项集成也是思科与Google数月来合作的成果。两家公司早在2017年10月就宣布将展开合作,当时双方表示,将让企业能够在混合计算环境中始终如一地运行软件。
思科还透露了关于如何实现这些目标的细节。思科云平台和解决方案部门高级副总裁Kip Compton在一篇博客文章中表示,思科正在将两个主要的硬件平台——Cisco HyperFlex和Cisco Application Centric Infrastructure——与Anthos进行集成。
HyperFlex是一个“超融合基础设施”平台,结合了软件定义的存储和数据服务以及思科统一计算系统(一个集成了计算、网络和存储资源的融合基础设施系统)。Cisco Application Centric Infrastructure(ACI)是一个软件定义的网络平台,用于构建跨云和私有数据中心的网络。其他思科产品包括Cisco Stealthwatch Cloud、Cisco SD-WAN和Cisco Intersight也将与Anthos进行集成。
思科与Google的合作也扩展到了Google的一些关键应用开发平台。例如,思科的基础设施经过优化将可以Google Kubernetes Engine——一种管理服务,可帮助协调用于托管现代应用的软件容器集群。因此,思科建议客户使用GKE而不是自己的Cisco Container Platform,尽管后者仍将被用于与其他云进行集成。
这次思科与Google的合作还涉及到Istio——一种用于连接、管理和保护微服务的服务网格。
思科云解决方案营销高级总监Fabio Gori在接受采访时表示,与GKE和Istio的集成是关键,因为这实现了从Google Cloud到客户数据中心“可管理的持续集成/持续开发流程”。 Gori表示,这是业界首创的,无论托管应用在什么位置,开发者都可以自动推送修复和更新。
人工智能也备受关注,思科和Google开发了面向Kubeflow的新软件。Kubeflow是一种开源的Kubernetes原生平台,用于开发、编排、部署和运行大型机器学习工作负载。
从本质上看,思科正试图将其平台定位为那些希望在本地运行Google Cloud工作负载的企业的最佳选择。Gori说,这样做的好处不仅仅是关乎效率,而且还涉及到安全性和数据所有权。
Compton表示:“我们将做大量的集成,这些集成凝聚了过去几年我们双方从共同合作中所学到的很多东西。我们跨数据中心产品、网络和安全产品组合的整合,最终将为客户提供最安全、最灵活的多云架构和混合架构。”
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。