至顶网软件频道消息: 思科正在围绕Google Cloud的混合云服务平台——最新更名为Anthos——扩大与Google的合作。
思科将把自己一部分核心硬件平台和软件产品与Google Cloud的Anthos(以前的Cloud Service Platform)进行集成,这么做是为了在企业越来越多地采用所谓“多云”战略的时候会考虑选择思科。所谓多云战略,是指计算工作负载分布在多个云平台和私有云数据中心。
Anthos可以说是Google混合云战略的最新版本。Anthos旨在帮助客户将云工作负载转移到私有数据中心,并以同样高效的方式运行这些负载。Google的目标是让云端和本地数据中心运行服务变得更加简单,让客户可以更好地选择运行应用的环境。这一切都很好,但这些客户也需要确保他们的本地基础设施完全可以在不中断的情况下运行这些云工作负载,而这正是思科认为自己可以发挥作用的地方。
这项集成也是思科与Google数月来合作的成果。两家公司早在2017年10月就宣布将展开合作,当时双方表示,将让企业能够在混合计算环境中始终如一地运行软件。
思科还透露了关于如何实现这些目标的细节。思科云平台和解决方案部门高级副总裁Kip Compton在一篇博客文章中表示,思科正在将两个主要的硬件平台——Cisco HyperFlex和Cisco Application Centric Infrastructure——与Anthos进行集成。
HyperFlex是一个“超融合基础设施”平台,结合了软件定义的存储和数据服务以及思科统一计算系统(一个集成了计算、网络和存储资源的融合基础设施系统)。Cisco Application Centric Infrastructure(ACI)是一个软件定义的网络平台,用于构建跨云和私有数据中心的网络。其他思科产品包括Cisco Stealthwatch Cloud、Cisco SD-WAN和Cisco Intersight也将与Anthos进行集成。
思科与Google的合作也扩展到了Google的一些关键应用开发平台。例如,思科的基础设施经过优化将可以Google Kubernetes Engine——一种管理服务,可帮助协调用于托管现代应用的软件容器集群。因此,思科建议客户使用GKE而不是自己的Cisco Container Platform,尽管后者仍将被用于与其他云进行集成。
这次思科与Google的合作还涉及到Istio——一种用于连接、管理和保护微服务的服务网格。
思科云解决方案营销高级总监Fabio Gori在接受采访时表示,与GKE和Istio的集成是关键,因为这实现了从Google Cloud到客户数据中心“可管理的持续集成/持续开发流程”。 Gori表示,这是业界首创的,无论托管应用在什么位置,开发者都可以自动推送修复和更新。
人工智能也备受关注,思科和Google开发了面向Kubeflow的新软件。Kubeflow是一种开源的Kubernetes原生平台,用于开发、编排、部署和运行大型机器学习工作负载。
从本质上看,思科正试图将其平台定位为那些希望在本地运行Google Cloud工作负载的企业的最佳选择。Gori说,这样做的好处不仅仅是关乎效率,而且还涉及到安全性和数据所有权。
Compton表示:“我们将做大量的集成,这些集成凝聚了过去几年我们双方从共同合作中所学到的很多东西。我们跨数据中心产品、网络和安全产品组合的整合,最终将为客户提供最安全、最灵活的多云架构和混合架构。”
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。