至顶网软件与服务频道消息:去年年底,IBM方面宣布与美国银行建立合作伙伴关系,共同开发用于金融服务行业的公有云(美国银行将成为首家客户)解决方案。这一消息之所以值得关注,是因为在我看来,云服务市场的现有水平还无法满足银行等强监管类行业对于安全性、隐私性以及网络弹性级别提出的严苛要求。
就在本周,IBM方面发布了此项计划的最新动态,宣布了第一批独立软件供应商(ISV)以及软件即服务(SaaS)合作伙伴,这些合作方将把自己的产品引入IBM打造的金融服务云体系。下面,我们略过其中的繁文缛节,直击项目本身的当前定位。
建立生态系统
IBM专门用于支持金融服务的这套云体系计划于2020年下半年启动,正如前文所提到,美国银行将成为该云的首家客户。对于IBM来说,这代表着一项巨大成就,但建立成功生态系统还意味着吸纳更多组织加入自己的阵营。具体来讲,如何招揽与金融机构具有业务往来、负责为金融机构提供服务的独立软件供应商及SaaS供应商,将成为其中的一大核心难题。只有吸引到足够的合作者,IBM才能真正向各类小型/大型银行敞开怀抱,并广泛参与到全球产品交付的浪潮当中。就个人而言,我认为枯燥乏味的安全性与合规性演习,一直是阻碍合作方加入并推动广泛行业合作/创新的最大障碍。IBM公司则着手为那些希望通过公有云交付解决方案的组织提供合规实施方案及证明流程,借此扭转目前的不利局面。IBM表示,他们这套支持金融服务的公有云将帮助各类组织加快并简化参与银行业务往来及合规证明的具体流程。
在将自家产品托管在IBM金融服务云上的独立软件供应商与SaaS厂商的首批名单当中,我们看到了Assima、C3.ai、Finacle、Inteelect Design以及Thought Machine的名字。这些都是广为人知、值得依赖的著名供应商,应该也能让金融机构在选择IBM的云产品时抱有更坚定的信心。IBM方面表示,这些独立软件生态系统合作伙伴都将经历严格的核准流程,整个审查由IBM支持并充分考虑到金融服务业的实际需求。
安全增强
那么,IBM要如何说服一直对安全问题保持警惕的金融行业,将其极度敏感的运营体系迁移到公有云当中?最基本的前提,就是尽可能提升安全性与合规性水平。IBM正在为各独立软件供应商及金融机构提供帮助,引导他们定义并监控当前安全性与合规性态势。
IBM方面指出,其内部咨询公司Promontory将帮助各类组织理解法规要求,同时为各组织提供参考架构,帮助用户利用自动化与集成化DevSecOps流程在公有云当中高效部署并管理安全性与合规性控制方案。
此外,作为项目推广工作的一部分,IBM还扩展了Hyper Protect加密服务,高度关注数据保护工作。除了对应用层级的加密提供最新支持之外,密钥管理器还可以利用智能卡帮助组织立足传输流程保护数据安全。组织将能够保留自己的密钥——换句话说,即使是IBM内部员工也无法访问未经加密的客户数据。在我看来,IBM云解决方案的核心优势也正在这里。尽管其他不少云服务商也宣称允许客户“自带密钥”,简称KYOK,但IBM提供的基于硬件的安全保护区真正让客户获得了对密钥的全面控制权。在这项功能的支持下,IBM的产品得以满足FIPS 140-2 L4级别的安全认证要求,即最高安全认证级别。由于不具备这一核心硬件组件,目前还没有其他哪家云服务供应商能够通过这项认证。
总结
就目前来看,IBM公司在构建全球首套可用于金融服务的公有云方面表现不错。随着美国银行成为其首批客户,外加众多独立软件供应商/SaaS合作伙伴的积极加入,整个生态系统正在逐步成型。IBM公司在硬件/大型机安全领域方面的深厚技术积累与创新成果,使他们与大多数竞争产品区分开来,并真正实现了KYOK与最高级别的安全认证。也许这一切,能够说服金融服务行业将其高敏感度业务迁移至公有云,并给整个行业开启前所未有的创新时代。未来如何,让我们拭目以待!
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。