在传统的应用架构中,企业怕是难以应对数据规模激增带来的技术挑战,这时,容器技术为企业提供了全新的思路。凭借弹性伸缩、快速部署等优势,容器为应用程序的开发及部署带来了前所未有的灵活性,并借此在多云之间、云与本地系统之间,乃至不同本地系统之间应用程序工作负载的往来迁移等场景下,得到广泛应用,并成为最受瞩目的云计算领域的趋势之一。
但是,有效构建起复杂的容器化环境仍然需要大量的技巧及经验。容器即服务(CaaS)也由此应运而生,作为平台即服务的一种变体,这个概念正在被广泛使用,以加速容器的采用。不过,CaaS是厂商们「略带忽悠 」的另一个「即服务 」术语?还是有确实「有点东西 」?
数据表明,CaaS并非浪得虚名。
根据Flexera发布的《2020年云计算现状报告》来看,在此次面向750位IT高管的调查中,大部分云采用者(53%)也在同时使用CaaS;而随着容器在企业发展中所占比重的提升,CaaS保持着良好的上升趋势与运营走向。值得注意的是,CaaS已经成为云驱动型企业当中得到广泛使用的第二大「平台即服务 」,远高于去年调查中的第六位,仅次于占比62%的「数据库即服务 」。调查报告的作者表示,“如今,越来越多的企业利用容器加快部署、扩展运营,并提高云环境下工作负载运行效率等等,他们对容器技术的关注度不断增长,目前来看,这一趋势保持着旺盛的推进势头。”从增长速度来看,CaaS以同比17%的增幅排名第二,仅次于物联网服务(21%)。另一大快速增长的类别则是机器学习与人工智能,其同比增幅同样为17%。
总体而言,这项调查在2020年第一季度进行,发现公有云与混合云解决方案的采用率不断上升,其中AWS、微软Azure以及Google Cloud各自占据重要的市场份额。
除了基础云产品之外,不少企业还开始从公有云服务商手中筛选CaaS产品,来增强并加快应用程序交付能力。AWS的Elastic Container Service 与 Elastic Kubernetes Service (ECS/EKS)最受欢迎,使用率高达54%,远高于去年Flexera云报告中的44%。另有24%的人已经有计划采用ECS/EKS。Azure容器服务的采用率达到46%(去年为28%);而Google Kubernetes Engine(GKE)的占比也由15%增长至24%。
来自Scalyr公司的Eric Olsson表示,CaaS确实带来了一系列重要的收益,能够在部署的速度及控制之间求得良好平衡。“敏捷方法缩短了开发与测试的时间,而云计算则缩短了部署周期。持续集成(CI)与持续交付(CD)进一步加快了交付速度。除此之外,容器还可以提供功能更强大、更灵活的解决方案。当然,伴随着所有这些因素,容器也带来了额外的配置要求与复杂性。”
目前,缺乏专业知识仍是使用容器技术的最大挑战,有41%的受访者将其列为头号难题。另有38%的受访者认为将传统应用程序迁移至容器才是最大挑战;34%的受访者表示安全性才最让人头痛。此外,超过四分之一的企业甚至发现就连服务供应商,也存在容器技术缺失问题。调查报告的作者们提到,“资源方面的挑战可能源自容器技术的不断迭代与快速普及。将传统应用程序迁移至容器同样相当困难,因为容器针对微服务架构进行了优化,但传统应用程序并非如此。”Flexera调查的作者们指出,CaaS采用率的提升,可能有助于应对这一系列挑战。
调查结果还显示,Docker与Kubernetes的受众仍然相当可观。近三分之二(65%)的组织使用Docker,另有14%的组织有计划在短期内使用。58%的受访者正在使用Kubernetes,另有22%正计划使用。
好文章,需要你的鼓励
Liquid AI发布了新一代视觉语言基础模型LFM2-VL,专为智能手机、笔记本电脑和嵌入式系统等设备高效部署而设计。该模型基于独特的LIV系统架构,GPU推理速度比同类模型快2倍,同时保持竞争性能。提供450M和1.6B两个版本,支持512×512原生分辨率图像处理,采用模块化架构结合语言模型和视觉编码器。模型已在Hugging Face平台开源发布。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。