近年来,随着新技术模型出现、各行业应用场景价值打磨与海量数据积累下的产品效果提升,人工智能应用已从消费、互联网等泛C端领域,向制造、能源、电力等传统行业辐射。麦肯锡全球研究所(McKinsey Global Institute)的一项预测显示,随着人工智能技术越来越成熟,能力越来越强,预计它将极大地推动世界经济,到2030年将创造约13万亿美元的附加价值。
从细分结构来看,随着AI技术的不断成熟,更多的场景和行业开始嵌入使用AI技术,这些AI行业应用场景逐渐趋于长尾和碎片化,产生了大量细分专业化的数据需求。对于人工智能应用来说,AI数据的精准度失之毫厘则差之千里,而在人工智能应用落地的过程中,AI数据精准度的差异会愈发的明显。
在此背景下,专业的AI训练数据服务厂商+领先的AI训练数据处理工具对于行业智能化升级的价值提升就会更为明显。在人工智能数据市场中,AI数据服务商想要形成强劲的业务优势,就要摆脱同质化竞争,保持在模式、技术、服务等方面的不断发展;而其源源不断产出的高质量、场景化的数据,也促使着人工智能产业加速发展,显著提升了Al应用的规模化落地效果。这种双向促进的“供求”关系,让AI数据服务精细化、场景化和专业化的趋势愈演愈烈。
云测数据总经理贾宇航在数据要素市场化配置专题研讨会上表示,随着算法模型、技术理论和应用场景的优化和创新,AI产业对训练数据的拓展性需求和前瞻性需求均快速增长;另一方面,随着行业内对训练数据需求类型的增加以及对服务标准要求的提高,产业链的专业化分工将愈加清晰,行业向着专业化、规范化方向快速发展。
云测数据面向智能驾驶、智慧城市、智能家居、智慧金融、新零售等众多领域提供一站式AI数据处理服务,提供通用数据集、数据标注平台&数据管理系统等生产工具,实现“数据原料”到最后的“数据成品”全链条打通,持续为计算机视觉、语音识别、自然语言处理、知识图谱等AI主流技术领域提供高价值数据支持,实现场景数据专业化、高质量交付,帮助企业更快更好地实现AI应用成功落地。在今年,云测数据还深度参与编写了中国信息通信研究院云计算与大数据研究所(中国信通院云大所)重磅发布的全球首个AI模型开发管理标准,这也彰显了云测数据在人工智能数据方面的领先实践。接下来,云测数据将持续发挥行业优势,并规划在2022第三届深圳国际人工智能展上发布重要内容,敬请关注。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。