数据是AI时代的基石,伴随着人工智能技术产业的发展落地,以数据采集、数据清洗、数据标注、数据管理等环节构成的中国人工智能数据服务市场日益壮大,市场对于数据的需求呈指数级增长。如何有效释放数据价值,成为当前人工智能行业面临的一大挑战。
人工智能数据服务指为 AI 算法训练及优化提供的数据采集、清洗、信息抽取、标注等服务,以采集和标注为主。人工智能概念爆发伊始,算法、算力、数据就是重要的三要素,进入落地阶段,智能交互、人脸识别、无人驾驶等应用成为最大的热门,AI 公司开始比拼技术与产业的结合能力,而数据作为 AI 算法的“燃料”,是实现这一能力的必要条件。因此,为机器学习算法训练、优化提供数据采集、标注等服务的人工智能基础数据服务成为这一人工智能热潮中必不可少的一环。可以说,优质的、海量的数据,是当前人工智能发现知识,创造价值,智能决策和行动的关键第一步。
在这个过程中,AI数据服务的工程化能力至关重要,数据服务通过工程化的赋能可以广泛地覆盖人工智能不同场景下的数据需求。提升数据服务的工程化能力,需要建设提供底层框架支持和一站式的统一开发平台,将数据采集、数据传输、数据清洗、数据标注、数据管理等进行集成,在解决实际数据需求的同时不断沉淀数据处理能力,形成数据标注平台。云测数据总经理认为,在“工欲善其事必先利其器”这样的背景之下,数据标注平台在质量和生产效率上都制约着产能的提升。数据标注工具的结构创新、智能化、工程化等能力,才是助力人工智能产业快速落地的推进器。
在此背景下,专业的AI训练数据服务厂商+领先的AI训练数据处理工具对于行业智能化升级的价值提升就会更为明显。以头部AI数据服务企业云测数据标注平台为例,云测数据标注平台创造性地提出“数据在环和模型迭代在环新方式”,通过综合系列工具平台,进行数据在环开发打通,将数据采集、处理、标注、训练、模型输出进行持续迭代集成。相比传统的采集数据、训练模型的方式,数据在环和模型迭代在环新方式,可极大提升模型迭代的速度和提升模型准确度,以及可极大降低数据获取成本、处理成本、标注成本、使用成本。通过综合在环的工具链,形成数据在环迭代系统,将极大地提升人工智能领域的场景落地,节省大量研发时间和成本。
齐全多样类型工具组件,灵活部署标注场景
由于AI应用场景边界的不断扩展,数据标注工具也从简单过渡到复杂,以往市面上开源工具多已经无法适应工具需求从简易到复杂的变化。加之数据标注业务具有多样性、丰富性,集成多样性、灵活些的标注工具平台成为实现现阶段精准标注数据的首要需求。
云测数据标注平台支持图像、文本、语音、视频以及点云等数据类型的一站式加工处理,拥有3D立体框、点云语义分割、特征点、线段、矩形框、曲线、平面立体框、多边形等业内最多类型的专业工具组件,可灵活满足不同的标注需求,配合算法模型进行数据处理落地,并支持标注工具的定制开发,快速响应AI训练多样化需求。
可视化项目管理,加速AI训练产能提升
在云测数据标注平台的流程管理上,可准确地把控从创建任务、分配任务、标注流转到质检/抽检等环节,实现对数据标注过程的全流程掌控。数据标注后经过审核、质检、验收等不同环节确保数据准确性。平台流程之间的自动化流转的作业衔接,达到了更快的流转速度,能更好地提升数据作业的效率。同时在整个项目流转的过程中,操作员无法对数据进行下载和传输,风险管控机制完善,可全方位保证数据的隐私安全。以自动驾驶为例,采用云测数据标注平台,可实现车企DataOps数据闭环中的数据清洗、标注工作,与原流程相比提升2倍的流转效率。
据了解,“云测数据标注平台”已经应用到汽车、安防、手机、家居、金融、教育、新零售、地产等行业,先后获得中国信通院“2022可信AI案例人工智能平台应用标杆案例”、“2022年人工智能年度评选最佳服务平台奖、“2021中国式创新案例TOP100”等业界权威认可,彰显了云测数据在技术领域的先进性与硬实力。
对于整个人工智能行业来说,在高质量AI数据的助力下,人工智能技术对真实场景世界的理解将更进一步。相信云测数据作为人工智能产业链上的重要一环,将立足数据安全,瞄准更高质量、聚焦落地场景,持续加大在AI数据领域的技术研发与落地实践,充分发挥AI数据的“源动力”价值。
好文章,需要你的鼓励
这项研究由德累斯顿工业大学等机构的研究团队完成,旨在解决主动学习未被广泛应用的问题。研究者构建了包含460万种超参数组合的实验网格,系统分析了各参数对主动学习性能的影响。研究发现,不同策略实现间存在显著差异,基于边缘的不确定性策略整体表现最佳,随机选择约4000个超参数组合即可获得可靠结果。这些发现为设计可重现、可信赖的主动学习实验提供了明确指导,有助于降低入门门槛,促进技术在实际应用中的普及。
这项由英国爱丁堡大学和上海人工智能实验室研究者共同完成的工作提出了LongBioBench,一种用于评估长文本语言模型的新型基准测试框架。通过使用人工生成的虚构人物传记作为测试环境,该框架在保持可控性的同时,提供了更真实的评估场景。研究对18个长文本模型的测试表明,即使最先进的模型在检索、推理和可信任性方面仍存在显著挑战,特别是上下文长度增加时。研究还揭示了现有合成基准测试的设计缺陷和长上下文预训练的局限性,为未来模型开发提供了重要指导。
SuperWriter是一项来自新加坡科技设计大学和清华大学的突破性研究,通过模仿人类"先思考后写作"的过程,彻底改良了AI长文生成能力。该研究团队开发的框架包含三个关键阶段:规划、写作和修改,使AI能像专业作家一样进行结构化思考。实验结果表明,经过训练的SuperWriter-LM模型不仅超越同等规模的所有AI模型,甚至在某些领域表现优于规模更大的顶级模型,为AI辅助写作开创了新的可能性。
香港大学与阿里巴巴达摩院合作开发的LayerFlow是一种突破性的层级视频生成技术,能同时生成透明前景、完整背景和混合场景视频。该技术通过创新的框架设计将不同视频层级作为子片段连接,并引入层级嵌入使模型区分各层级。面对高质量训练数据稀缺的挑战,研究团队设计了三阶段训练策略,结合Motion LoRA和Content LoRA,实现了图像和视频数据的联合训练。LayerFlow不仅支持多层视频生成,还能实现视频分解和条件层生成,为视频创作领域带来革命性变革。