Oracle 宣布将对 MySQL HeatWave 进行革新,包括支持向量存储、生成式 AI、新增数据库内机器学习功能、MySQL Autopilot 增强功能、新增 HeatWave Lakehouse 功能、支持 JavaScript、加速 JSON 查询以及支持新的分析运算符。目前在私有预览中,向量存储支持客户利用大型语言模型 (LLM) 的功能及专有数据,其准确性比仅使用公开数据进行训练的模型更高。通过生成式 AI 和向量存储功能,客户可以使用自然语言与 MySQL HeatWave 交互,并高效地在 HeatWave Lakehouse 中搜索各种格式的文档。
甲骨文公司首席企业架构师 Edward Screven 表示:“此次宣布推出的 MySQL HeatWave 增强功能,是我们在解决客户数据、分析和 AI 等紧迫问题的又一个重要里程碑。我们之前在 HeatWave 中添加了具有高性价比、自动化机器学习、湖仓一体和多云功能的实时分析。现在,向量存储和生成式 AI 为客户带来了强大的 LLM,客户可以用一种直观的方式来与企业中的数据交互,并获得业务所需的准确结果。”
为满足希望对各种数据类型和数据源执行分析、事务处理、机器学习和生成性 AI 的客户,MySQL HeatWave 中增加了额外的功能,适用于与 MySQL 兼容的工作负载和非 MySQL 工作负载。
生成式 AI 和向量存储(私有预览)
向量存储以各种格式(如 PDF)摄取文档,并将其存储为通过编码器模型生成的嵌入。对于给定的用户查询,向量存储将对所存储的嵌入和嵌入式查询执行相似性搜索,识别相似度高的文档,然后这些文档将用于增强给 LLM 的提示,使其能够提供更符合情境的答案。
MySQL HeatWave AutoML
MySQL HeatWave 所提供的数据库内机器学习包含全自动化的训练模型管道。客户无需将数据迁移到单独的机器学习服务中,即可轻松、安全地将存储在 MySQL HeatWave 中的数据用于机器学习训练、推断和解释。具体新增功能如下:
MySQL Autopilot
MySQL Autopilot 是 MySQL HeatWave 的内置功能,使用机器学习驱动的自动化来提高性能和可扩展性,并且无需具备数据库调优的专业知识即可操作。该功能将学习如何执行查询,以改进未来查询的执行计划。MySQL Autopilot 新的增强功能包括:
其他 MySQL HeatWave 增强功能
NAND Research 首席分析师兼创始合伙人 Steve McDowell 表示:“MySQL HeatWave 工程团队显然正在加大 AI 和机器学习的创新力度。现在,客户不仅能够以全面自动化的方式,使用数据库和对象存储中的数据进行机器学习模型训练,还可以借助全新的 AI 和向量存储功能,以自然语言与 HeatWave 进行交互。相关的模型训练除了使用公开提供的数据外,也使用了企业自己的数据,让客户能够获得精准符合业务目的的答案。客户可以自由选择 LLM,而这一点凸显了 MySQL HeatWave 工程团队的开放式协作策略。”
MySQL HeatWave 可在一个 MySQL 数据库服务中提供事务处理、实时分析、机器学习、数据池查询和基于机器学习的自动化功能。作为 Oracle Distributed Cloud 策略的核心,MySQL HeatWave 在 OCI 和 Amazon Web Services 中原生提供,作为 Oracle Database Service for Azure 的一部分提供,以及通过 OCI Dedicated Region 在客户数据中心内提供。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
ByteDance智能创作实验室发布的Phantom-Data是首个大规模跨情境主体一致性视频生成数据集,包含约100万个身份一致配对样本。该数据集通过创新的三阶段构建管道,从5300万视频和30亿图像中精选高质量跨场景配对,有效解决AI视频生成中的"复制粘贴"问题,显著提升文本遵循能力和视觉质量。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
普林斯顿大学研究团队开发了ReasonFlux-PRM,这是首个能深度理解AI复杂思维过程的评分系统。不同于传统只看最终答案的评估方法,新系统能评判AI思考轨迹的每个步骤质量,在数学和科学推理任务上实现了平均4.5%-12.1%的性能提升,为AI教育和训练提供了突破性的解决方案。