Oracle公司今天推出了最新版本的Exadata数据库优化计算平台,宣称与上一代产品相比,其在人工智能模型训练中使用的矢量搜索性能提高了55%,分析扫描吞吐量提高了2.2倍,交易处理性能提高了25%。
Exadata X11M接替了18个月前推出的Exadata X10M。Oracle在这一版本中强调了灵活性,指出该系统可以在企业内部使用,也可以通过所有主要的云服务访问,还可以作为Oracle托管服务在本地部署。
它采用了AMD最新一代的 96 核EPYC处理器和远程直接内存访问技术。该技术允许在联网计算机的内存之间直接传输数据,不涉及任何一台计算机的操作系统或CPU。
Oracle表示,该版本的软件增强功能将RDMA性能提高了33%,与X10M相比,全闪存存储的使用将访问时间缩短了一半。
更快的矢量搜索
Oracle特别强调了该机器在矢量搜索方面的性能提升,矢量搜索是一种寻找数据数据的方法,与查询相似但不完全相同。它是推荐系统和自然语言处理等人工智能应用的核心功能。
该平台还支持持久矢量索引搜索功能,其中矢量索引及其相关数据不是完全存储在主内存中,而是存储在持久存储介质上。这样就可以在大型数据集上进行搜索,同时还能提高可用性。
新的矢量距离运算符会根据 SQL 查询返回矢量之间的距离。距离运算符通过测量两个向量之间的距离来量化它们之间的相似或不相似程度,距离越小表示项目之间的关系越密切。
Exadata数据库服务产品管理副总裁Bob Thome表示:“计算向量之间的距离非常耗费 CPU。”“我们将其下推到存储层,使其速度更快。”
Thome表示,矢量搜索可以透明地卸载到Exadata存储,并利用比传统架构快30倍的算法。搜索查询也可以在存储服务器之间自动并行。
这与软件有关
Oracle指出,Exadata使用现成的组件,通过软件实现其速度和灵活性。Thome表示:“如果你只是采用标准架构的CPU,你实现不了同样的结果。”“我们独特的数据智能软件可以实现更高量级的性能。”
这包括用于节点间集群协调的专有算法和可加速对存储数据的访问的独特RDMA 缓存功能。一项名为Smart Scan的功能可自动将数据密集型 SQL 操作卸载到存储中,而另一项功能则可自动将行数据转换为内存中的列格式,以便进行高速分析。Oracle称,与X10M相比,分析查询处理的速度最多可提高25%。
Oracle公司仍然重视多云部署,其目标是使Exadata成为所有企业使用该公司数据库管理软件的首选平台。去年7月,Oracle宣布推出一项服务,利用多个云实例大幅降低 Exadata 的成本。今年9月,在谷歌云和微软的Azure 之外,该公司平息了长久以来与AWS的争端,在AWS上的Oracle Cloud Infrastructure 上提供Exadata数据库服务。
数据库和自主服务产品营销全球副总裁 Steve Zivanic 表示,运行 Exadata工作负载的客户现在可以“在不同的部署场景之间移动,而不会出现停机或中断”。“如果你在企业内部部署,但想涉足云计算,不需要移植或更改应用程序。 你可以随心所欲地移动工作负载。”
好文章,需要你的鼓励
SAP S/4HANA内存ERP系统推出十多年后,95%的传统用户表示构建积极的迁移案例需要巨大努力或面临真正挑战。一项涵盖455名CIO、高级IT角色、SAP专家和业务经理的调查发现,83%的受访者不完全理解SAP最新的迁移政策和截止日期,84%对当前信息传递及其对运营的影响表示担忧。SAP为传统ECC系统设定了激进的支持截止日期,主流支持将于2027年结束。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
微软通过其Planetary Computer平台将NASA的Landsat和Sentinel-2卫星数据集引入Azure云服务。该数据集包含来自NASA的Landsat 8、9号卫星以及欧洲航天局Sentinel-2系列卫星的地球监测数据,为气候变化、土地利用、农业应用等研究提供宝贵资源。用户可通过API或Azure存储直接访问这些PB级全球环境数据。微软还建议研究人员使用Azure OpenAI服务创建智能应用,结合AI技术进行土地分类、植被监测、森林砍伐趋势分析等地球观测研究。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。