ZD至顶网软件频道消息:11月30日,百度云智峰会在北京拉开帷幕。在上午峰会主论坛上,百度副总裁王路与太原铁路局局长赵春雷,福田汽车集团总裁、福田商用汽车集团总裁宋术山,南方航空电子商务部副总经理王景成,中国海事局曾辉共同发布智能交通生态联盟。
百度云分享自身在云计算、人工智能和大数据领域的技术优势,构建“交通大脑”,与合作伙伴一起促进交通运输领域的技术创新和应用,发展智能交通,推动交通运输更智能、更高效、更安全地运行和发展。
交通领域变革在即 智能交通时代来临
如果将国民经济看作一个生命体,那么交通则是它的血脉。然而,随着经济建设的迅猛发展,交通的发展却出现了严重的失衡与滞后。交通拥堵成为城市的恶疾,物流的低效甚至严重影响经济的发展。目前我国每年仅因天气导致航班延误或取消,经济损失就多达数百亿。
当资源的开发逼近极限,单纯依靠工程建设已无法解决现有的交通问题,唯有建立更智能、高效的交通系统才是未来交通发展最具想象力的解决方案。从国家政策层面来看,今年7月国家发改委和交通运输部联合发布的《推进"互联网+"便捷交通促进智能交通发展的实施方案》,旨在推动智能交通稳步发展。
作为一家以技术驱动为核心竞争力的公司,百度通过百度云分享自身在云计算、大数据和人工智能等领域的技术优势,通过构建可以计算、分析、处理庞大交通数据的“交通大脑”,打破海陆空以及行政区域的限制,实时抓取散落在各个路面交通、地下交通、空中航线的海量数据。
同时通过百度拥有的全球最大规模的深度神经网络、最大深度机器学习开源平台,对交通大数据的有效归类、提取、利用,实现多系统配合协调,建立起一个更安全、更高效、更准确的智能交通体系。
智能交通生态联盟发布 囊括陆海空车
此次百度云与中国海事局、太原铁路局、南方航空公司、福田汽车达成深度合作,成立覆盖陆海空车的智能交通生态联盟。目前,诸多合作已在进行中。相信随着合作的深入,必将改变交通现状,推动中国智能交通的发展。
在与太原铁路局的合作中,双方共建国内首家集铁路、航空和公路三位一体多式联运的物流云平台。通过百度云的接入,该平台可打通货物在公路、铁路、航空的运送及仓储信息;并利用大数据进行资源调配,通过人工智能深度学习物流管理,优化调度效率可达59%。
另一方面,百度云还将与中国南方航空共同推进智能航空计划,将通过大数据实现对于航班、旅客、机票、航站楼、天气等信息的综合分析调度。同时共同推进大数据营销、新一代信息技术和百度云的推广应用、消费信贷等多方面的合作探索,为用户打造一站式的智能出行服务平台。
同样基于百度云技术,将通过与中国海事局的合作,海事港口、船舶及相关水上设施信息也将实现联通和数据的共享,加强程控,降低成本,合力提升海运管控能力。
从陆地到海洋再到空中,百度云并不满足于交通体系的立体扩张,还要创造全新的交通方式。百度目前正在推进可以感知车辆行驶、预测交通状况的智能汽车和无人汽车的发展。百度无人车已成为国内外瞩目的前沿科技代表,在去年完成了实地路测,并在今年的乌镇峰会上再次亮相。
在智能汽车的商业化方面,百度已与国内知名商用车企业福田汽车达成战略合作。双方已联合发布了国内首款无人驾驶卡车。未来,百度将与福田汽车在汽车大数据、智能驾驶领域深入合作,开发出更多具备智能驾驶的商用车产品
云计算、人工智能和大数据已成为新一轮产业革命的核心驱动力,百度云将透过云生态下的“交通大脑”,依托智能交通生态联盟,加强行业合作,挖掘数据中的更多价值,推进智能交通的全面云端化,突破前所未及的高度,让智能,计算无限可能。
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。