ZD至顶网软件频道消息:IBM周二正在推出一种新的Watson支持的物联网(IoT)服务,旨在帮助制造商精简其装配线检验流程。
Watson IoT平台副总裁Bret Greenstein对ZDNet表示,Watson被用来处理和分析各种结构化和非结构化数据,视觉识别是其优势之一。他说,使用Watson改进制造检验流程是一个理想的用例,这是由于这项工作的重复性。在每个部件都经过了检验之后,Cognitive Visual Inspection(认知视觉检测)系统变得更加有效。
事实上,IBM发现,对包括视觉检查在内的八天生产周期进行的半天的早期测试显示,Cognitive Visual Inspection(认知视觉检测)系统可以将检测时间减少高达80%。
该系统还将制造缺陷降低了7%至10%。它可以帮助检测微小的产品缺陷,如划痕和针孔尺寸的孔。
为了部署系统,数据科学家为其提供图像并训练其查找某些类型的缺陷。Greenstein表示:作为制造商,“你知道要找什么,现在只是教会一个系统来帮你寻找这样的缺陷,只要你有更高程度的信心,效果就会更好。”
系统会在拥有了足够的信息来检测某些缺陷模式时给出通告。 Greenstein表示,培训时间因产品而异,但制造商可以在一天之内启动并达到一定程度的置信水平。
系统被训练好之后,它将使用制造商已经使用的任何UHD相机系统的图像。Cognitive Visual Inspection(认知视觉检测)系统会在发现潜在缺陷的时候向人类发出警示,并且根据其是否发现缺陷给出置信水平。
该系统易于扩展。通过基于云的培训和管理工作流程,可以部署在任意数量的制造检验站。
定价使用的是基于消耗量的模型,以及附加许可组件。
IBM目前正在与全球IT咨询和技术服务提供商Capgemini合作,为其客户测试和集成IBM Cognitive Visual Inspection(认知视觉检测)系统。Capgemini是在位于德国慕尼黑的IBM Watson 物联网总部办公的公司之一,IBM在过去二十多年中队该总部投资了2亿美元,是该公司在欧洲最大的投资。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。